精英家教网 > 高中数学 > 题目详情
18.用反证法证明:设x,y,z均大于0,a=x+$\frac{1}{y}$,b=y+$\frac{1}{z}$,c=z+$\frac{1}{x}$,证明:a,b,c三数中至少有一个不小于2.

分析 假设a,b,c三数都小于2,则x+$\frac{1}{y}$+y+$\frac{1}{z}$+z+$\frac{1}{x}$<6,再结合基本不等式,引出矛盾,即可得出结论

解答 证明:假设a,b,c三数都小于2,则x+$\frac{1}{y}$+y+$\frac{1}{z}$+z+$\frac{1}{x}$<6.
∵x,y,z均大于0,
∴x+$\frac{1}{y}$+y+$\frac{1}{z}$+z+$\frac{1}{x}$=x+$\frac{1}{x}$+$\frac{1}{y}$+y+$\frac{1}{z}$+z≥2+2+2=6,矛盾.
∴a,b,c三数中至少有一个不小于2.

点评 用反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左顶点A作斜率为2的直线,与椭圆的另一个交点为B,与y轴的交点为C,已知|AB|=$\frac{6}{13}$|BC|.
(1)求椭圆的离心率;
(2)设动直线y=kx+m与椭圆有且只有一个公共点P,且与直线x=4相交于点Q,若x轴上存在一定点M(1,0),使得PM⊥QM,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义域为R的函数f(x)=$\left\{\begin{array}{l}\frac{1}{{|{x-2}|}},x≠2\\ 1,x=2\end{array}$,若关于x的函数h(x)=f2(x)+af(x)+$\frac{1}{2}$有5个不同的零点x1,x2,x3,x4,x5,则x12+x22+x32+x42+x52等于(  )
A.15B.20C.30D.35

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算:cos42°cos18°-cos48°sin18°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{e^x}{x}$的定义域为(0,+∞).
(Ⅰ)求函数f(x)在[m,m+1](m>0)上的最小值;
(Ⅱ)对任意x∈(0,+∞),不等式xf(x)>-x2+λx-1恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某商场在今年春节假期的促销活动中,对大年初一9时至14时的销售金额进行统计,并将销售金额按9时至10时,11时至12时,12时至13时,13时至14时进行分组,绘制成如图所示的频率分布直方图,已知大年初一9时至10时销售金额为3万元,则大年初一11时-12时的销售金额为(  )
A.4万元B.8万元C.10万元D.12万元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在地面距离塔基分别为100m,200m,300m的A、B、C处测得塔顶的仰角分别为α,β,γ,且α+β+γ=90°,则塔高为100m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义域为R的四个函数y=x3,y=2x,y=x2,y=sinx中,奇函数的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{3}$,则双曲线C的渐近线与圆D:(x-c)2+y2=2a2(c
为双曲线的半焦距)的位置关系为(  )
A.相离B.相切C.相交D.不确定

查看答案和解析>>

同步练习册答案