精英家教网 > 高中数学 > 题目详情
已知等差数列{an}中,其前n项和Sn=n2+c(其中c为常数),
(1)求{an}的通项公式;
(2)设b1=1,{an+bn}是公比为a2等比数列,求数列{bn}的前n项和Tn
考点:数列的求和,等差数列的通项公式
专题:等差数列与等比数列
分析:(1)利用赋值法求得数列的前3项,即可求得结论.
(2)由题意求得bn=2×3n-1-an利用分组求和及错位相减法求和即可得出结论.
解答: 解:(1)a1=S1=1+c,a2=S2-S1=3,a3=S3-S2=5-----(2分)
因为等差数列{an},所以2a2=a1+a3得c=0-----------------------------(4分)
∴a1=1,d=2,an=2n-1-----------------------------------(6分)
(2)a2=3,a1+b1=2∴an+bn=2×3n-1------------------------------(8分)
bn=2×3n-1-an------------------------------(9分)
Sn=
2(1-3n)
1-3
-(a1+a2+…+an)=3n-n2-1
-------------------(12分)
点评:本题主要考查等差数列的定义及数列求和的方法,考查学生的运算求解能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A={(x,y)|x+y≤4,x≥0,y≥0},B={(x,y)|0≤x≤1,0≤y≤3},若向区域A上随机投一粒豆子,则豆子落入区域B的概率为(  )
A、
1
4
B、
3
8
C、
1
2
D、
5
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}中,a1=t,其前n项和为Sn,满足2Sn=an•an+1
(1)如果数列{an}为等差数列,求t的取值,并求出数列{an}的通项公式;
(2)如果数列{an}为单调递增数列,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x|x-a|-ln(x+1)
(1)当a=0时,求函数f(x)的单调区间;
(2)当a=-1时,若?x∈[0,+∞),f(x)≤(k+1)x2恒成立,求实数k的最小值;
(3)证明:
n
i=1
2
2i-1
-ln(2n+1)<2(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂某种产品的年产量为1000x件,其中x∈[20,100],需要投入的成本为C(x),当x∈[20,80]时,C(x)=
1
2
x2-30x+500(万元);当x∈(80,100]时,C(x)=
20000
x
(万元).若每一件商品售价为
lnx
x
(万元),通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于x的函数解析式;
(2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

某校随机抽取某次高三数学模拟考试甲、乙两班各10名同学的客观题成绩(满分60分),统计后获得成绩数据的茎叶图(以十位数字为茎,个位数字为叶),如图所示:
(Ⅰ)分别计算两组数据的平均数,并比较哪个班级的客观题平均成绩更好;
(Ⅱ)从这两组数据中分别抽取一个数据,求其中至少有一个是满分(60分)的概率;
(Ⅲ)规定:客观题成绩不低于55分为“优秀客观卷”,从甲班的十个数据中任意抽取两个,求两个都是“优秀客观卷”的概率.
甲 班 乙 班
 35
 5 0 045 5 0
 5 5 5 5 050 0 5 5 5
0 060

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-a|(a>0),且不等式f(x)≥|x+1|的解集为{x|x≤
1
2
}.
(Ⅰ)求a的值;
(Ⅱ)设函数g(x)=f(x)+|2x+1|,若不等式|2m+3|+|m-3|≥|m|•g(x)对任意m∈R且m≠0恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,则输出的结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(tan
4
,sin(-
π
6
))是叫θ终边上一点,则cos(
2
+θ)=
 

查看答案和解析>>

同步练习册答案