【题目】随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1200名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:
分组 | 频数(单位:名) |
使用“余额宝” |
|
使用“财富通” |
|
使用“京东小金库” | 30 |
使用其他理财产品 | 50 |
合计 | 1200 |
已知这1200名市民中,使用“余额宝”的人比使用“财富通”的人多160名.
(1)求频数分布表中
,
的值;
(2)已知2018年“余额宝”的平均年化收益率为
,“财富通”的平均年化收益率为
.若在1200名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取7人,然后从这7人中随机选取2人,假设这2人中每个人理财的资金有10000元,这2名市民2018年理财的利息总和为
,求
的分布列及数学期望.注:平均年化收益率,也就是我们所熟知的利息,理财产品“平均年化收益率为
”即将100元钱存入某理财产品,一年可以获得3元利息.
【答案】(1)
;(2)680元.
【解析】
(1)根据题意,列方程
,然后求解即可
(2)根据题意,计算出10000元使用“余额宝”的利息为
(元)和
10000元使用“财富通”的利息为
(元),
得到
所有可能的取值为560(元),700(元),840(元),
然后根据
所有可能的取值,计算出相应的概率,并列出
的分布列表,然后求解数学期望即可
(1)据题意,得
,
所以
.
(2)据
,得这被抽取的7人中使用“余额宝”的有4人,使用“财富通”的有3人.
10000元使用“余额宝”的利息为
(元).
10000元使用“财富通”的利息为
(元).
所有可能的取值为560(元),700(元),840(元).
,
,
.
的分布列为
| 560 | 700 | 840 |
|
|
|
|
所以
(元).
科目:高中数学 来源: 题型:
【题目】图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第
代“勾股树”所有正方形的个数与面积的和分别为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的定义域为
,若满足
,则称函数
为“
型函数”.
(1)判断函数
和
是否为“
型函数”,并说明理由;
(2)设函数
,记
为函数
的导函数.
①若函数
的最小值为1,求
的值;
②若函数
为“
型函数”,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年4月,甲乙两校的学生参加了某考试机构举行的大联考,现对这两校参加考试的学生的数学成绩进行统计分析,数据统计显示,考生的数学成绩
服从正态分布
,从甲乙两校100分及以上的试卷中用系统抽样的方法各抽取了20份试卷,并将这40份试卷的得分制作成如图所示的茎叶图:
![]()
(1)试通过茎叶图比较这40份试卷的两校学生数学成绩的中位数;
(2)若把数学成绩不低于135分的记作数学成绩优秀,根据茎叶图中的数据,判断是否有
的把握认为数学成绩在100分及以上的学生中数学成绩是否优秀与所在学校有关?
(3)从所有参加此次联考的学生中(人数很多)任意抽取3人,记数学成绩在134分以上的人数为
,求
的数学期望.
附:若随机变量
服从正态分布
,则
,![]()
,
.
参考公式与临界值表:
,其中
.
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】意大利人斐波那契在1202年写的《计算之书》中提出一个兔子繁殖问题:假设一对刚出生的小兔一个月后能长成大兔,再过一个月便能生下一对小兔,此后每个月生一对小兔,如此,设第n个月的兔子对数为
,则
,
,
,
,
,….考查数列
的规律,不难发现,
(
),我们称该数列为斐波那契数列.
(1)若数列
的前n项和为
,满足
,
(
,
),试判断数列
是否构成斐波那契数列,说明理由;
(2)若数列
是斐波那契数列,且
,求证:数列
是等比数列;
(3)若数列
是斐波那契数列,求数列
的前n项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧
(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为
,要求
均在线段
上,
均在圆弧上.设OC与MN所成的角为
.
![]()
(1)用
分别表示矩形
和
的面积,并确定
的取值范围;
(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为
.求当
为何值时,能使甲、乙两种蔬菜的年总产值最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学组织高二年级开展对某品牌西瓜市场调研活动.两名同学经过了解得知此品牌西瓜,不仅便宜而且口味还不错,并且每日的销售量y(单位:千克)与销售价格x(元/千克)满足关系式:
,其中
,a为常数.已知销售价格为5元/千克时,每日可售出此品牌西瓜11千克.若此品牌西瓜的成本为3元/千克,试确定销售价格x的值,使该商场日销售此品牌西瓜所获得的利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四面体
的棱长满足
,
,现将四面体
放入一个主视图为等边三角形的圆锥中,使得四面体
可以在圆锥中任意转动,则圆锥侧面积的最小值为___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】气象意义上,从春季进入夏季的标志为:“连续5天的日平均温度不低于22℃”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):
①甲地:5个数据的中位数为24,众数为22;
②乙地:5个数据的中位数为27,总体均值为24;
③丙地:5个数据的中有一个数据是32,总体均值为26,总体方差为10.8;
则肯定进入夏季的地区的有( )
A. ①②③ B. ①③ C. ②③ D. ①
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com