精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,已知△顶点(-4,0)和(4,0),顶点在椭圆上,则=                                 (  )
A.B.C.1D.
A

分析:由椭圆的性质得到A、C 是椭圆的两个焦点,由椭圆的定义知,AB+BC=2a=10,AC=8,
再利用正弦定理得= ,从而求出结果.
解:椭圆中.a=5,b=3,c=4,故A(-4,0)和C(4,0)是椭圆的两个焦点,
∴AB+BC=2a=10,AC=8,由正弦定理得 ===2r,
====
故选 A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的长轴,离心率为坐标原点,过的直线轴垂直,是椭圆上异于的任意一点,为垂足,延长,使得,连接并延长交直线的中点
(1)求椭圆方程并证明点在以为直径的圆
(2)试判断直线与圆的位置关系
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为.过的直线交椭圆于两点,过的直线交椭圆于两点,且,垂足为
(Ⅰ)设点的坐标为,证明:
(Ⅱ)求四边形的面积的最小值.
 
 
 
 
 
 
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)已知椭圆C: 过点(1,  ),F1F2分别为其左、右焦点,且离心率e= ;
(1)求椭圆C的方程;
(2)设过定点的直线与椭圆C交于不同的两点,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的左、右焦点分别为,其中也是抛物线的焦点,在第一象限的交点,且
(1)求椭圆的方程;
(2)已知菱形的顶点在椭圆上,顶点在直线上,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设向量,过定点,以方向向量的直线与经过点,以向量为方向向量的直线相交于点P,其中
(1)求点P的轨迹C的方程;
(2)设过的直线与C交于两个不同点M、N,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的中心在原点,焦点在x轴上,焦距为2,且经过点A
(1)求满足条件的椭圆方程;
(2)求该椭圆的顶点坐标,长轴长,短轴长,离心率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
(1)求斜率为2的平行弦的中点轨迹方程。
(2)过A(2,1)的直线L与椭圆相交,求L被截得的弦的中点轨迹方程;
(3)过点P(0.5,0.5)且被P点平分的弦所在直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆方程,当的最小值时,椭圆的离心率 

查看答案和解析>>

同步练习册答案