精英家教网 > 高中数学 > 题目详情
如图,已知椭圆的长轴,离心率为坐标原点,过的直线轴垂直,是椭圆上异于的任意一点,为垂足,延长,使得,连接并延长交直线的中点
(1)求椭圆方程并证明点在以为直径的圆
(2)试判断直线与圆的位置关系
 
(1)见解析(2)见解析
(1)由已知,所以,所以椭圆的方程为,得证
(2)直线的斜率为,倾斜角∠得∠,即直线的倾斜角为,所以直线的方程为
,所以,所以直线的斜率为的斜率为,所以,即
点在以为直径的圆上,所以与圆相切于
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题



如图,已知点,且的内切圆方程为.
(1)  求经过三点的椭圆标准方程;
(2)  过椭圆上的点作圆的切线,求切线长最短时的点的坐标和切线长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.
已知椭圆,常数,且
(1)时,过椭圆左焦点的直线交椭圆于点,与轴交于点,若,求直线的斜率;
(2)过原点且斜率分别为)的两条直线与椭圆的交点为(按逆时针顺序排列,且点位于第一象限内),试用表示四边形的面积
(3)求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,一个焦点是,且两条准线间的距离为
(I)求椭圆的方程;
(II)若存在过点A(1,0)的直线,使点F关于直线的对称点在椭圆上,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面直角坐标系中,已知△顶点(-4,0)和(4,0),顶点在椭圆上,则=                                 (  )
A.B.C.1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设A,B分别是直线上的两个动点,并且,动点P满足.记动点P的轨迹为C.
(I)求轨迹C的方程;
(II)若点D的坐标为(0,16),M、N是曲线C上的两个动点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在第一象限,且是椭圆上的一点,△的内切圆半径是,求的坐标

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知点B是椭圆的短轴位于x轴下方的端点,过B作斜率为1的直线交椭圆于点M,点P在y轴上,且PM//x轴,,若点P的坐标为(0,t),则t的取值范围是                       (   )


 
        
A.0<t<3

B.0<t≤3
C.
D.0<t≤

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知两点,若直线上存在点P,使得,则称该直线为“A型直线”。给出下列直线:①;②;③;④,其中是“A型直线”的是                  

查看答案和解析>>

同步练习册答案