精英家教网 > 高中数学 > 题目详情
8.已知数列{an}的前n项和Sn=n2+n,则该数列的通项公式an=2n.

分析 由数列的前n项和求得首项,再由an=Sn-Sn-1(n≥2)求得an,验证首项后得答案.

解答 解:由Sn=n2+n,得
a1=S1=2,
当n≥2时,
an=Sn-Sn-1=(n2+n)-[(n-1)2+(n-1)]=2n.
当n=1时上式成立,
∴an=2n.
故答案为:2n.

点评 本题考查了由数列的前n项和求数列的通项公式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知曲线y=sinx在x=0处的切线与曲线y=lnx-x+a相切,则实数a=1+ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数fn(θ)=sinnθ+cosnθ,n∈N*,且f1(θ)=a,其中常数a为区间(0,1)内的有理数.
(1)求fn(θ)的表达式(用a和n表示)
(2)求证:对任意的正整数n,fn(θ)为有理数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设二项式(3x+1)n的展开式的二项式系数的和为p,各项系数的和为q,且12p+64=q,则n的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.给出条件:①x1<x2,②|x1|>x2,③x1<|x2|,④x12<x22.函数f(x)=|sinx|+|x|,对任意${x_1}、{x_2}∈[{-\frac{π}{2},\frac{π}{2}}]$,能使f(x1)<f(x2)成立的条件的序号是④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.以下是科学家与之相研究的领域不匹配的是(  )
A.笛卡儿-解析几何B.帕斯卡-概率论C.康托尔-集合论D.祖暅之-复数论

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.由于雾霾日趋严重,政府号召市民乘公交出行.但公交车的数量太多会造成资源的浪费,太少又难以满足乘客需求.为此,某市公交公司在160名乘客中进行随机抽样,共抽取20人进行调查反馈,将他们的候车时间作为样本分成4组,如表所示(单位:分钟):
组别候车时间人数
1[0,5)2
2[5,10)4
3[10,15)8
4[15,20)6
(Ⅰ)估计这160名乘客中候车时间少于10分钟的人数;
(Ⅱ)若从上表第1组、第2组的6人中选2人进行问卷调查,求抽到的2人恰好来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知三棱锥O-ABC的三条侧棱OA,OB,OC两两垂直,△ABC为等边三角形,M为△ABC内部一点,点P在OM的延长线上,且PA=PB.
(1)证明:OA=OB;
(2)证明:平面PAB⊥平面POC;
(3)若$PA=\sqrt{5}\;OC$,$OP=\sqrt{6}\;OC$,求二面角P-OA-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将函数f(x)=2sin(2x+$\frac{π}{4}$)的图象向右平移φ(φ>0)个单位,再将图象上每一点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),所得图象关于直线x=$\frac{π}{4}$对称,则φ的最小值为(  )
A.$\frac{1}{8}π$B.$\frac{1}{2}π$C.$\frac{3}{4}π$D.$\frac{3}{8}π$

查看答案和解析>>

同步练习册答案