精英家教网 > 高中数学 > 题目详情
如图,在半径为1,圆心角为60°的扇形AB弧上任取一点P,作扇形的内接矩形PNMQ,使点N、M分别在半径OA、OB上,点Q在
AB
上,求这个矩形面积的最大值.
考点:扇形面积公式
专题:三角函数的求值
分析:如图所示,取
AB
的中点E,连接OE分别交PQ、MN于F、G点,连接OP.设∠POE=θ.(θ∈(0,
π
6
))
.可得PF=sinθ,OF=cosθ.又OG=
NG
tan30°
=
3
sinθ
.可得FG=OF-OG=cosθ-
3
sinθ
.因此这个矩形面积S=2sinθ(cosθ-
3
sinθ)
=2sin(2θ+
π
3
)
-
3
,利用三角函数的单调性即可得出.
解答: 解:如图所示,
AB
的中点E,连接OE分别交PQ、MN于F、G点,连接OP.
设∠POE=θ.(θ∈(0,
π
6
))

则PF=sinθ,OF=cosθ.
OG=
NG
tan30°
=
3
sinθ

∴FG=OF-OG=cosθ-
3
sinθ

∴这个矩形面积S=2sinθ(cosθ-
3
sinθ)

=sin2θ-
3
(1-cos2θ)

=2sin(2θ+
π
3
)
-
3

θ∈(0,
π
6
)
,∴(2θ+
π
3
)
(
π
3
3
)

∴当2θ+
π
3
=
π
2
,即θ=
π
12
时,sin(2θ+
π
3
)
取得最大值1.
∴这个矩形面积的最大值是2-
3
点评:本题考查了三角函数的单调性、倍角公式、两角和差的正弦公式、矩形的面积计算公式、直角三角形的边角关系,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若A=
π
3
,求sin2B+sin2C的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x方程3sin(x+10°)+4cos(x+40°)-a=0有实数解,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
(x+1)2+1
+
(x-3)2+4
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(2-|x|),则函数y=f(x)减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足
x≥1
y≤2
x-y≤0
,则2x•2y的取值范围是(  )
A、[4,8]
B、[4,16]
C、[8,16]
D、[4,32]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an},公差d>0,前n项和为Sn,S3=6,且满足a3-a2,2a2,a8成等差数列
(1)求{an}的通项公式;
(2)设bn=
1
anan+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x-
π
3
)+2sin2x,x∈R.
(Ⅰ)求函数f(x)的最小正周期及图象的对称轴方程;
(Ⅱ)设函数g(x)=[f(x)]2+f(x),求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1
2
lnx的反函数为
 

查看答案和解析>>

同步练习册答案