【题目】在直角坐标系中,已知定点、,动点满足,设点的曲线为,直线与交于两点.
(1)写出曲线的方程,并指出曲线的轨迹;
(2)当,求实数的取值范围;
(3)证明:存在直线,满足,并求实数的取值范围.
【答案】(1),曲线的轨迹是以、为焦点的双曲线的上支;(2)或;(3)详见解析,,
【解析】
(1)结合双曲线的定义,可知点的轨迹是以、为焦点的双曲线的上支,求出轨迹方程即可;
(2)将直线与的方程联立,消去,可得到关于的一元二次方程,令,求解即可;
(3)联立直线与的方程,得到关于的一元二次方程,由,可得,设,则,结合根与系数关系,可得到,若存在符合题意的直线,还需要满足以下三个条件:①;②;③,求解即可.
(1)动点满足,且、,所以点的轨迹是以、为焦点的双曲线的上支,,,,
所以曲线的方程为;
(2)由题意,联立,消去,得,
,解得或.
故的取值范围是或.
(3)因为,所以,设,则.
联立,可得,,
则,,
所以,整理得.
若存在符合题意的直线,还需要满足以下三个条件:①;②;③.
①,整理得,又,则,显然恒成立;
②,等价于,
因为恒成立,所以,即;
③,由②知,所以.
所以满足,即.
又因为,所以,且,故.
所以存在直线,满足,的取值范围为:,的取值范围为:.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,是椭圆:上的点,过点的直线的方程为.
(1)求椭圆的离心率;
(2)当时,
(i)设直线与轴、轴分别相交于,两点,求的最小值;
(ii)设椭圆的左、右焦点分别为,,点与点关于直线对称,求证:点,,三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).
(1)求图中的值;
(2)根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | ||
女 | 50 | ||
合计 |
(参考公式:,其中)
0.40 | 0.025 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
(3)将频率视为概率,从本次考试80分以上的所有人员中,按分层抽样的方式抽取5个人的样本;现从5人样本中随机选取2人,求选取的2人恰好都来自区间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(卷号)2040818101747712
(题号)2050752239689728
(题文)
在平面直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知直线的参数方程为(为参数),曲线C的极坐标方程为.
(1)求曲线的直角坐标方程和直线的普通方程;
(2)设直线与曲线交于两点,点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知定点、,动点满足,设点的曲线为,直线与交于两点.
(1)写出曲线的方程,并指出曲线的轨迹;
(2)当,求实数的取值范围;
(3)证明:存在直线,满足,并求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4,坐标系与参数方程】
在直角坐标系中,直线的参数方程为(t为参数),在以O为极点,轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为
(Ⅰ)求直线的普通方程与曲线C的直角坐标方程;
(Ⅱ)若直线与轴的交点为P,直线与曲线C的交点为A,B,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,有三根针和套在一根针上的个金属片,按下列规则,把金属片从一根针上全部移到另一根针上.
(1)每次只能移动一个金属片;
(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.
将个金属片从1号针移到3号针最少需要移动的次数记为,则__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是圆内接四边形,,,.
(1)求证:平面平面;
(2)设线段的中点为,线段的中点为,且在线段上运动,求直线与平面所成角的正弦值的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4,坐标系与参数方程】
在直角坐标系中,直线的参数方程为(t为参数),在以O为极点,轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为
(Ⅰ)求直线的普通方程与曲线C的直角坐标方程;
(Ⅱ)若直线与轴的交点为P,直线与曲线C的交点为A,B,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com