精英家教网 > 高中数学 > 题目详情
12.若曲线$y=alnx+\frac{1}{2}{x^2}+2x$的切线斜率都是正数,则实数的取值范围是(  )
A.(1,+∞)B.[1,+∞)C.(0,+∞)D.[0,+∞)

分析 求出导函数,利用已知条件列出不等式,求解即可.

解答 解:曲线$y=alnx+\frac{1}{2}{x^2}+2x$,x>0,
可得y′=$\frac{a}{x}$+x+2,由题意可得:$\frac{a}{x}$+x+2>0恒成立,
即a>-x2-2x,
y=-x2-2x,开口向下,x=-1是对称轴,x>0时,函数是减函数,
可得a≥0.
故选:D.

点评 本题考查函数的导数的应用,二次函数的性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,在三棱柱ABC-A1B1C1中,侧面A1ABB1是菱形,侧面C1CBB1是矩形.
(1)D是棱B1C1上一点,AC1∥平面A1BD,求证:D为B1C1的中点;
(2)若A1B⊥AC1,求证:平面A1ABB1⊥平面C1CBB1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a,b,c分别是△ABC的三个内角A,B,C的三条对边,且csinC-asinA=(b-a)sinB.
(Ⅰ)求角C的大小;
(Ⅱ)求cosA+cosB的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sin(ωx+φ)(ω>0,$|φ|<\frac{π}{2}$)的零点构成一个公差为$\frac{π}{2}$的等差数列,$f(0)=-\frac{{\sqrt{3}}}{2}$,则f(x)的一个单调递增区间是(  )
A.$(-\frac{5π}{12},\frac{π}{12})$B.$(-\frac{π}{6},\frac{π}{3})$C.$(-\frac{π}{12},\frac{5π}{12})$D.$(\frac{π}{12},\frac{7π}{12})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x-m(x+1)ln(x+1)(m>0)的最大值是0,函数g(x)=x-a(x2+2x)(a∈R).
(Ⅰ)求实数m的值;
(Ⅱ)若当x≥0时,不等式f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设mx2-mx-1≥0的解集为∅,则实数m的取值范围是(-4,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数fn(x)=$\frac{n{x}^{2}-ax}{{x}^{2}+1}$(n∈N*)的图象在原点处的切线的倾斜角为135°.
(1)求f1(x)的单调区间;
(2)设x1,x2,…,xn为正实数,且$\sum_{i=1}^{n}$xi=1,求证:fn(x1)+fn(x2)+…+fn(xn)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知角α终边上一点P(m,1),$cosα=-\frac{1}{3}$,求tanα的值;
(2)求值:$\frac{tan150°cos(-210°)sin(-420°)}{sin1050°cos(-600°)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.随着社会发展,广州市在一天的上下班时段经常会出现堵车严重的现象.交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念.记交通指数为T,其范围为[0,10],分别有5个级别;T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10)严重拥堵.早高峰时段(T≥3),从广州市交通指挥中心随机选取了50个交通路段进行调查,依据交通指数数据绘制的直方图如图所示:
(1)据此直方图,估算交通指数T∈[3,9)时的中位数和平均数;
(2)据此直方图,求市区早高峰马路之间的3个路段至少有2个严重拥堵的概率;
(3)某人上班路上所用时间,若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为35分钟;中度拥堵为45分钟;严重拥堵为60分钟,求此人上班所用时间的数学期望.

查看答案和解析>>

同步练习册答案