【题目】对某种书籍每册的成本费(元)与印刷册数(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.
4.83 | 4.22 | 0.3775 | 60.17 | 0.60 | -39.38 | 4.8 |
表中,.
为了预测印刷20千册时每册的成本费,建立了两个回归模型:,.
(1)根据散点图,你认为选择哪个模型预测更可靠?(只选出模型即可)
(2)根据所给数据和(1)中选择的模型,求关于的回归方程,并预测印刷20千册时每册的成本费.
附:对于一组数据,,…,,其回归方程的斜率和截距的最小二乘估计公式分别为:,.
科目:高中数学 来源: 题型:
【题目】古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为 .记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:
三角形数 ,
正方形数N(n,4)=n2 ,
五边形数 ,
六边形数N(n,6)=2n2﹣n,
…
可以推测N(n,k)的表达式,由此计算N(10,24)= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离为 ,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(1)求抛物线C的方程;
(2)当点P(x0 , y0)为直线l上的定点时,求直线AB的方程;
(3)当点P在直线l上移动时,求|AF||BF|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列的前项和为,对任意,点都在函数 的图象上.
(1)求数列的通项公式;
(2)若数列,求数列的前项和;
(3)已知数列满足,若对任意,存在使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求实数a的值;
(2)若A∪B=A,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象如图所示,则下列说法正确的是( )
A. 函数的周期为
B. 函数在上单调递增
C. 函数的图象关于点对称
D. 把函数的图象向右平移个单位,所得图象对应的函数为奇函数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com