Óɺ¯Êýy=f£¨x£©È·¶¨ÊýÁÐ{an}£¬an=f£¨n£©£¬Èôº¯Êýy=f£¨x£©µÄ·´º¯Êýy=f-1£¨x£©ÄÜÈ·¶¨ÊýÁÐ{bn}£¬bn=f-1£¨n£©£¬Ôò³ÆÊýÁÐ{bn}ÊÇÊýÁÐ{an}µÄ¡°·´ÊýÁС±£®
£¨1£©Èôº¯ÊýÊýѧ¹«Ê½È·¶¨ÊýÁÐ{an}µÄ·´ÊýÁÐΪ{bn}£¬Çóbn£»
£¨2£©Éècn=3n£¬ÊýÁÐ{cn}ÓëÆä·´ÊýÁÐ{dn}µÄ¹«¹²Ïî×é³ÉµÄÊýÁÐΪ{tn}
£¨¹«¹²Ïîtk=cp=dq£¬k¡¢p¡¢qΪÕýÕûÊý£©£®ÇóÊýÁÐ{tn}ǰ10ÏîºÍS10£»
£¨3£©¶Ô£¨1£©ÖÐ{bn}£¬²»µÈʽÊýѧ¹«Ê½¶ÔÈÎÒâµÄÕýÕûÊýnºã³ÉÁ¢£¬ÇóʵÊýaµÄ·¶Î§£®

½â£º£¨1£©£¨x¡Ý0£©?£¨nΪÕýÕûÊý£©£¬
£¨x¡Ý0£©
ËùÒÔÊýÁÐ{an}µÄ·´ÊýÁÐ{bn}µÄͨÏnΪÕýÕûÊý£©£®
£¨2£©cn=3n£¬dn=log3n£¬
3p=log3q£¬
Ôò£¬
ÓÐ{cn}?{dn}£¬tn=3n£¬
ËùÒÔ{tn}µÄǰnÏîºÍ£®
£¨3£©¶ÔÓÚ£¨1£©ÖÐ{bn}£¬
²»µÈʽ»¯Îª£º£¬
¶ÔÈÎÒâÕýÕûÊýnºã³ÉÁ¢£¬
ÉèTn=£¬
£¬
ÊýÁÐ{Tn}µ¥µ÷µÝÔö£¬
ËùÒÔ£¨Tn£©min=T1=1£¬
Ҫʹ²»µÈʽºã³ÉÁ¢£¬
Ö»Òª£®
¡ß1-2a£¾0£¬¡à£¬
1-2a£¾a2£¬£®
ËùÒÔ£¬Ê¹²»µÈʽ¶ÔÓÚÈÎÒâÕýÕûÊýºã³ÉÁ¢µÄaµÄȡֵ·¶Î§ÊÇ£º
·ÖÎö£º£¨1£©ÓÉ£¨x¡Ý0£©£¬Öª£¨nΪÕýÕûÊý£©£¬£¨x¡Ý0£©£¬ÓÉ´ËÄÜÇó³öÊýÁÐ{an}µÄ·´ÊýÁÐ{bn}µÄͨÏ
£¨2£©ÓÉcn=3n£¬dn=log3n£¬Öª3p=log3q£¬ËùÒÔtn=3n£¬ÓÉ´ËÄÜÇó³ö{tn}µÄǰnÏîºÍ£®
£¨3£©ÓɶÔÈÎÒâÕýÕûÊýnºã³ÉÁ¢£¬ÉèTn=£¬£¬ÊýÁÐ{Tn}µ¥µ÷µÝÔö£¬ËùÒÔ£¨Tn£©min=T1=1£¬ÒªÊ¹²»µÈʽºã³ÉÁ¢£¬Ö»Òª£®ÓÉ´ËÄÜÇó³öʹ²»µÈʽ¶ÔÓÚÈÎÒâÕýÕûÊýºã³ÉÁ¢µÄaµÄȡֵ·¶Î§£®
µãÆÀ£º±¾Ì⿼²éÊýÁкͲ»µÈʽµÄ×ÛºÏÔËÓ㬽âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Óɺ¯Êýy=f£¨x£©È·¶¨ÊýÁÐ{an}£¬an=f£¨n£©£¬Èôº¯Êýy=f£¨x£©µÄ·´º¯Êýy=f-1£¨x£©ÄÜÈ·¶¨ÊýÁÐ{bn}£¬bn=f-1£¨n£©£¬Ôò³ÆÊýÁÐ{bn}ÊÇÊýÁÐ{an}µÄ¡°·´ÊýÁС±£®
£¨1£©Èôº¯Êýf(x)=2
x
È·¶¨ÊýÁÐ{an}µÄ·´ÊýÁÐΪ{bn}£¬Çó{bn}µÄͨÏʽ£»
£¨2£©¶Ô£¨1£©ÖÐ{bn}£¬²»µÈʽ
1
bn+1
+
1
bn+2
+¡­+
1
b2n
£¾
1
2
loga(1-2a)
¶ÔÈÎÒâµÄÕýÕûÊýnºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨3£©Éècn=
1+(-1)¦Ë
2
3n+
1-(-1)¦Ë
2
•(2n-1)(¦ËΪÕýÕûÊý)
£¬ÈôÊýÁÐ{cn}µÄ·´ÊýÁÐΪ{dn}£¬{cn}Óë{dn}µÄ¹«¹²Ïî×é³ÉµÄÊýÁÐΪ{tn}£¬ÇóÊýÁÐ{tn}ǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Óɺ¯Êýy=f£¨x£©È·¶¨ÊýÁÐ{an}£¬an=f£¨n£©£¬º¯Êýy=f£¨x£©µÄ·´º¯Êýy=f-1£¨x£©ÄÜÈ·¶¨ÊýÁÐbn£¬bn=f-1£¨n£©Èô¶ÔÓÚÈÎÒân¡ÊN*¶¼ÓÐbn=an£¬Ôò³ÆÊýÁÐ{bn}ÊÇÊýÁÐ{an}µÄ¡°×Ô·´º¯ÊýÁС±
£¨1£©É躯Êýf£¨x£©=
px+1
x+1
£¬ÈôÓɺ¯Êýf£¨x£©È·¶¨µÄÊýÁÐ{an}µÄ×Ô·´ÊýÁÐΪ{bn}£¬Çóan£»
£¨2£©ÒÑÖªÕýÕûÊýÁÐ{cn}µÄǰÏîºÍsn=
1
2
£¨cn+
n
cn
£©£®Ð´³öSn±í´ïʽ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨3£©ÔÚ£¨1£©ºÍ£¨2£©µÄÌõ¼þÏ£¬d1=2£¬µ±n¡Ý2ʱ£¬Éèdn=
-1
anSn2
£¬DnÊÇÊýÁÐ{dn}µÄǰnÏîºÍ£¬ÇÒDn£¾loga£¨1-2a£©ºã³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Óɺ¯Êýy=f£¨x£©È·¶¨ÊýÁÐ{an}£¬an=f£¨n£©£¬º¯Êýy=f£¨x£©µÄ·´º¯Êýy=f-1£¨x£©ÄÜÈ·¶¨ÊýÁÐ{bn}£¬bn=f-1£¨n£©£¬Èô¶ÔÓÚÈÎÒân?N*£¬¶¼ÓÐbn=an£¬Ôò³ÆÊýÁÐ{bn}ÊÇÊýÁÐ{an}µÄ¡°×Ô·´ÊýÁС±£®
£¨1£©Èôº¯Êýf£¨x£©=
px+1
x+1
È·¶¨ÊýÁÐ{an}µÄ×Ô·´ÊýÁÐΪ{bn}£¬Çóan£»
£¨2£©ÔÚ£¨1£©Ìõ¼þÏ£¬¼Ç
n
1
x1
+
1
x2
+¡­
1
xn
ΪÕýÊýÊýÁÐ{xn}µÄµ÷ºÍƽ¾ùÊý£¬Èôdn=
2
an+1
-1
£¬SnΪÊýÁÐ{dn}µÄǰnÏîÖ®ºÍ£¬HnΪÊýÁÐ{Sn}µÄµ÷ºÍƽ¾ùÊý£¬Çó
lim
n¡ú¡Þ
=
Hn
n
£»
£¨3£©ÒÑÖªÕýÊýÊýÁÐ{cn}µÄǰnÏîÖ®ºÍTn=
1
2
(Cn+
n
Cn
)
£®ÇóTn±í´ïʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•ÆÖ¶«ÐÂÇøÒ»Ä££©Óɺ¯Êýy=f£¨x£©È·¶¨ÊýÁÐ{an}£¬an=f£¨n£©£¬Èôº¯Êýy=f£¨x£©µÄ·´º¯Êýy=f-1£¨x£©ÄÜÈ·¶¨ÊýÁÐ{bn}£¬bn=f-1£¨n£©£¬Ôò³ÆÊýÁÐ{bn}ÊÇÊýÁÐ{an}µÄ¡°·´ÊýÁС±£®
£¨1£©Èôº¯Êýf(x)=2
x
È·¶¨ÊýÁÐ{an}µÄ·´ÊýÁÐΪ{bn}£¬Çóbn£»
£¨2£©Éècn=3n£¬ÊýÁÐ{cn}ÓëÆä·´ÊýÁÐ{dn}µÄ¹«¹²Ïî×é³ÉµÄÊýÁÐΪ{tn}
£¨¹«¹²Ïîtk=cp=dq£¬k¡¢p¡¢qΪÕýÕûÊý£©£®ÇóÊýÁÐ{tn}ǰ10ÏîºÍS10£»
£¨3£©¶Ô£¨1£©ÖÐ{bn}£¬²»µÈʽ
1
bn+1
+
1
bn+2
+¡­+
1
b2n
£¾
1
2
loga(1-2a)
¶ÔÈÎÒâµÄÕýÕûÊýnºã³ÉÁ¢£¬ÇóʵÊýaµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôº¯Êýy=f£¨x£©´æÔÚ·´º¯Êýy=f-1£¨x£©£¬Óɺ¯Êýy=f£¨x£©È·¶¨ÊýÁÐ{an}£¬an=f£¨n£©£¬Óɺ¯Êýy=f-1£¨x£©È·¶¨ÊýÁÐ{bn}£¬bn=f-1£¨n£©£¬Ôò³ÆÊýÁÐ{bn}ÊÇÊýÁÐ{an}µÄ¡°·´ÊýÁС±£®
£¨1£©ÈôÊýÁÐ{bn}ÊǺ¯Êýf£¨x£©=
x+1
2
È·¶¨ÊýÁÐ{an}µÄ·´ÊýÁУ¬ÊÔÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£»
£¨2£©Èôº¯Êýf£¨x£©=2
x
È·¶¨ÊýÁÐ{cn}µÄ·´ÊýÁÐΪ{dn}£¬Çó{dn}µÄͨÏʽ£»
£¨3£©¶Ô£¨2£©ÌâÖеÄ{dn}£¬²»µÈʽ
1
dn+1
+
1
dn+2
+¡­+
1
d2n
£¾
1
2
log£¨1-2a£©¶ÔÈÎÒâµÄÕýÕûÊýnºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸