精英家教网 > 高中数学 > 题目详情
13.定义区间(c,d),[c,d),(c,d],[c,d]的长度均为d-c,其中d>c.已知函数y=|2x-1|的定义域为[a,b],值域为$[{0,\frac{1}{2}}]$,则区间[a,b]长度的最大值与最小值的差$lo{g}_{2}\frac{3}{2}$.

分析 函数的图象,如图所示,y=|2x-1|=$\frac{1}{2}$,x=-1或$lo{g}_{2}\frac{3}{2}$,求出区间[a,b]长度的最大值与最小值,即可得出结论.

解答 解:函数的图象,如图所示,y=|2x-1|=$\frac{1}{2}$,x=-1或$lo{g}_{2}\frac{3}{2}$,
故[a,b]的长度的最大值为$lo{g}_{2}\frac{3}{2}$-(-1)=$lo{g}_{2}\frac{3}{2}$+1,最小值为0-(-1)=1,则区间[a,b]的长度的最大值与最小值的差为$lo{g}_{2}\frac{3}{2}$
故答案为$lo{g}_{2}\frac{3}{2}$.

点评 考查学生理解掌握指数函数定义域和值域的能力,运用指数函数图象增减性解决数学问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.如图是150辆汽车通过某路段时速度的频率分布直方图,则速度在[50,70)的汽车大约有(  )
A.120辆B.90辆C.80辆D.60辆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x-alnx,g(x)=-$\frac{1+a}{x}$(a∈R).
(Ⅰ)若a=1,求函数f(x)的极值;
(Ⅱ)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间;
(Ⅲ)若在区间[1,e=2.71828…)上不存在x0,使得f(x0)<g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.半径为1m的圆中,60°的圆心角所对的弧的长度为(  )
A.$\frac{π}{6}$mB.$\frac{π}{3}$mC.$\frac{2π}{3}$mD.1m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足:a1=3,an=an-1+2n-1(n≥2,n∈N*).
(1)求数列{an}的通项公式及前n项和Sn
(2)令bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,Tn=b1+2b2+…+2n-1bn(n∈N*),求证:Tn<$\frac{1}{6}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如果存在非零常数C,对于函数y=f(x)定义域上的任意x,都有f(x+C)>f(x)成立,那么称函数为“Z函数”.
(Ⅰ)若g(x)=2x,h(x)=x2,试判断函数g(x)和h(x)是否是“Z函数”?若是,请证明:若不是,主说明理由:
(Ⅱ)求证:若y=f(x)(x∈R)是单调函数,则它是“Z函数”;
(Ⅲ)若函数f(x)=ax3+2x2+3是“Z函数”,求实数a满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知α:1≤x≤3,β:m+1≤x≤m+4,且α是β的充分条件,则实数m的取值范围为[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知扇形的圆心角为72°,半径为5,则扇形的面积S=5π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=2sin(2x-\frac{π}{3})+2$.
(1)求f(x)的对称中心.(2)当x∈[$\frac{π}{4}$,$\frac{π}{2}$]时f(x)值域.

查看答案和解析>>

同步练习册答案