如图,ABCD为直角梯形,∠BCD=∠CDA=90°,AD=2BC=2CD,P为平面ABCD外一点,且PB⊥BD.
(1) 求证:PA⊥BD;
(2) 若PC与CD不垂直,求证:PA≠PD.
![]()
科目:高中数学 来源: 题型:
如图,在平面直角坐标系xOy中,椭圆C:
=1(a>b>0)的左焦点为F,右顶点为A,动点M 为右准线上一点(异于右准线与x轴的交点),设线段FM交椭圆C于点P,已知椭圆C的离心率为
,点M的横坐标为
.
(1) 求椭圆C的标准方程;
(2) 设直线PA的斜率为k1,直线MA的斜率为k2,求k1·k2的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
现有一个关于平面图形的命题:如图所示,同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为
.类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.
(1) 求数列{bn}的通项公式bn;
(2) 设数列{an}的通项an=loga
(其中a>0且a≠1).记Sn是数列{an}的前n项和,试比较Sn与
logabn+1的大小,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
一支足球队每场比赛获胜(得3分)的概率为a,与对手踢平(得1分)的概率为b,负于对手(得0分)的概率为c(a,b,c∈(0,1)),已知该足球队进行一场比赛得分的期望是1,则
的最小值为( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com