| A. | 150°或30° | B. | 120°或60° | C. | 30° | D. | 60° |
分析 利用同角函数的关系式求出A,B的关系,可得C的大小.
解答 解:由4sinA+3cosB=5,可得:16sin2A+9cos2B+24sinAcosB=25…①,
由4cosA+3sinB=2$\sqrt{3}$,可得:16cos2A+9sin2B+24sinBcosA=12…②,
用①+②可得:25+24(sinAcosB+sinBcosA)=37,
∵sinAcosB+sinBcosA=sin(A+B)=sinC,
∴24sinC=12,
sinC=$\frac{1}{2}$,
∴C=150或C=30.
∵当C=$\frac{5π}{6}$,即A+B=$\frac{π}{6}$时,A<$\frac{π}{6}$,
∴cosA>cos($\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,
∴4cosA>$\frac{4\sqrt{3}}{2}$,
∵sinB>0,
∴3sinB>0,
∴3sinB+4cosA>$2\sqrt{3}$,与题中的3sinB+4cosA=2$\sqrt{3}$矛盾.
故选:C.
点评 本题是基础题,考查三角函数的化简求值,注意角的范围的判断,是本题的易错点.
科目:高中数学 来源: 题型:选择题
| A. | $f({2^x})<f(\frac{lna}{a})<f[{(\frac{lna}{a})^2}]$ | B. | $f(\frac{lna}{a})<f[{(\frac{lna}{a})^2}]<f({2^x})$ | ||
| C. | $f(\frac{lna}{a})<f({2^x})<f[{(\frac{lna}{a})^2}]$ | D. | $f({2^x})<f[{(\frac{lna}{a})^2}]<f(\frac{lna}{a})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p为假 | B. | ¬q为真 | C. | p∨q为真 | D. | p∧q为假 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{8}{3}$ | B. | $-\frac{4}{3}$ | C. | $-\frac{3}{4}$ | D. | $-\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 18 | B. | 9 | C. | -8 | D. | -6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{π}{16}$,0) | B. | ($\frac{π}{9}$,0) | C. | ($\frac{π}{4}$,0) | D. | ($\frac{π}{2}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x1,x2∈(0,2) | B. | x1,x2∈(1,2) | C. | x1,x2∈(2,+∞) | D. | x1∈(1,2),x2∈(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com