【题目】德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)= ,称为狄利克雷函数,则关于函数f(x)有以下四个命题: ①f(f(x))=1;
②函数f(x)是偶函数;
③任意一个非零有理数T,f(x+T)=f(x)对任意x∈R恒成立;
④存在三个点A(x1 , f(x1)),B(x2 , f(x2)),C(x3 , f(x3)),使得△ABC为等边三角形.
其中真命题的个数是( )
A.4
B.3
C.2
D.1
【答案】A
【解析】解:①∵当x为有理数时,f(x)=1;当x为无理数时,f(x)=0, ∴当x为有理数时,ff((x))=f(1)=1;当x为无理数时,f(f(x))=f(0)=1,
即不管x是有理数还是无理数,均有f(f(x))=1,故①正确;
②∵有理数的相反数还是有理数,无理数的相反数还是无理数,
∴对任意x∈R,都有f(﹣x)=f(x),故②正确;
③若x是有理数,则x+T也是有理数;若x是无理数,则x+T也是无理数,
∴根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立,故③正确;
④取x1=﹣ ,x2=0,x3= ,可得f(x1)=0,f(x2)=1,f(x3)=0,
∴A( ,0),B(0,1),C(﹣ ,0),恰好△ABC为等边三角形,故④正确.
即真命题的个数是4个,
故选:A.
①根据函数的对应法则,可得不管x是有理数还是无理数,均有f(f(x))=1;
②根据函数奇偶性的定义,可得f(x)是偶函数;
③根据函数的表达式,结合有理数和无理数的性质;
④取x1=﹣ ,x2=0,x3= ,可得A( ,0),B(0,1),C(﹣ ,0),三点恰好构成等边三角形.
科目:高中数学 来源: 题型:
【题目】已知函数是定义在R上的奇函数,其中为自然对数的底数.
(1)求实数的值;
(2)若存在,使得不等式成立,求实数的取值范围;
(3)若函数在上不存在最值,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在三角形ABC中,AB<AC,∠BAC=90°,边AB,AC的长分别为方程 的两个实数根,若斜边BC上有异于端点的E,F两点,且EF=1,∠EAF=θ,则tanθ的取值范围为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点
(1)求证:平面ABE⊥平面BEF
(2)设PA=a,若平面EBD与平面ABCD所成锐二面角θ∈[ , ],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+2|+|x+a|(a∈R).
(Ⅰ)若a=5,求函数f(x)的最小值,并写出此时x的取值集合;
(Ⅱ)若f(x)≥3恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足:对任意实数x,都有f(x)≥x,且当x∈(1,3)时,有f(x)≤ (x+2)2成立.
(1)证明:f(2)=2;
(2)若f(-2)=0,求f(x)的表达式;
(3)设g(x)=f(x)-x,x∈[0,+∞),若g(x)图象上的点都位于直线y=的上方,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com