【题目】某人玩掷正方体骰子走跳棋的游戏,已知骰子每面朝上的概率都是
,棋盘上标有第0站,第1站,第2站,……,第100站.一枚棋子开始在第0站,选手每掷一次骰子,棋子向前跳动一次,若掷出朝上的点数为1或2,棋子向前跳两站;若掷出其余点数,则棋子向前跳一站,直到跳到第99站或第100站时,游戏结束;设游戏过程中棋子出现在第
站的概率为
.
(1)当游戏开始时,若抛掷均匀骰子3次后,求棋子所走站数之和X的分布列与数学期望;
(2)证明:
;
(3)若最终棋子落在第99站,则记选手落败,若最终棋子落在第100站,则记选手获胜,请分析这个游戏是否公平.
科目:高中数学 来源: 题型:
【题目】对于定义城为R的函数
,若满足:①
;②当
,且
时,都有
;③当
且
时,都有
,则称
为“偏对称函数”.下列函数是“偏对称函数”的是( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有一副斜边长为10的直角三角板,将它们斜边
重合,若将其中一个三角板沿斜边折起形成三棱锥
,如图所示,已知
,
,则三棱锥
的外接球的表面积为______;该三棱锥体积的最大值为_______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆![]()
的离心率为
,且经过点
.
![]()
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设椭圆的上、下顶点分别为
, 点
是椭圆上异于
的任意一点, ![]()
轴,
为垂足,
为线段
中点,直线
交直线
于点
,
为线段
的中点,若四边形
的面积为
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线
,设直线
经过点
且与抛物线
相交于
两点,抛物线
在
、
两点处的切线相交于点
,直线
,
分别与
轴交于
、
两点.
![]()
(1)求点
的轨迹方程
(2)当点
不在
轴上时,记
的面积为
,
的面积为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的图象如图所示,给出四个函数:①
,②
,③
,④
,又给出四个函数的图象,则正确的匹配方案是( ).
![]()
A.①-甲,②-乙,③-丙,④-丁B.②-甲,①-乙,③-丙,④-丙
C.①-甲,③-乙,④-丙,②-丁D.①-甲,④-乙,③-丙,②-丁
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】采购经理指数(PMⅠ)是衡量一个国家制造业的“体检表”,是衡量制造业在生产、新订单、商品价格、存货、雇员、订单交货新出口订单和进口等八个方面状况的指数,图为2018年9月—2019年9月我国制造业的采购经理指数(单位:%).
![]()
(1)求2019年前9个月我国制造业的采购经理指数的平均数(精确到0.1);
(2)从2018年10月—2019年9月这12个月任意选取4个月,记采购经理指数与上个月相比有所回升的月份个数为X,求X的分布列与期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】谢宾斯基三角形是一种分形,由波兰数学家谢宾斯基在1915年提出,先作一个正三角形挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色代表挖去的面积,那么黑三角形为剩下的面积(我们称黑三角形为谢宾斯基三角形).向图中第4个大正三角形中随机撒512粒大小均匀的细小颗粒物,则落在白色区域的细小颗粒物的数量约是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com