分析 设B(cosθ,sinθ),0≤θ≤π,C(m,n)(m,n>0),运用两点的距离公式和两直线垂直的条件:斜率之积为-1,可得m,n的方程,解方程可得C的坐标,运用两点的距离公式,化简整理,运用正弦函数的值域,即可得到所求最大值.
解答 解:曲线y=$\sqrt{1-{x^2}}$是以O为圆心,1为半径的上半圆,
可设B(cosθ,sinθ),0≤θ≤π,C(m,n)(m,n>0),
由等腰直角三角形ABC,可得
AB⊥AC,即有$\frac{n}{m-2}$•$\frac{sinθ}{cosθ-2}$=-1,①
|AB|=|AC|,即有$\sqrt{(m-2)^{2}+{n}^{2}}$=$\sqrt{(cosθ-2)^{2}+si{n}^{2}θ}$,
即为(m-2)2+n2=(cosθ-2)2+sin2θ,②
由①②解得m=2+sinθ,n=2-cosθ,
或m=2-sinθ,n=cosθ-2(舍去).
则|OC|=$\sqrt{(2+sinθ)^{2}+(2-cosθ)^{2}}$
=$\sqrt{8+si{n}^{2}θ+co{s}^{2}θ+4sinθ-4cosθ}$
=$\sqrt{9+4\sqrt{2}sin(θ-\frac{π}{4})}$,
当θ-$\frac{π}{4}$=$\frac{π}{2}$,即θ=$\frac{3π}{4}$∈[0,π],取得最大值$\sqrt{9+4\sqrt{2}}$=1+2$\sqrt{2}$.
故答案为:1+2$\sqrt{2}$.
点评 本题考查两点的距离公式的运用,考查圆的参数方程的运用,以及两直线垂直的条件:斜率之积为-1,同时考查正弦函数的值域,以及运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[\frac{13}{e^3},\frac{7}{e^2}]$ | B. | $(\frac{13}{e^3},\frac{7}{e^2}]$ | C. | $[\frac{7}{e^2},\frac{3}{e}]$ | D. | $(\frac{7}{e^2},\frac{3}{e}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com