精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=loga(1+x)-loga(1-x)(a>0,且a≠1).
(1)讨论f(x)的奇偶性与单调性;
(2)求f(x)的反函数;
(3)若${f^{-1}}(1)=\frac{1}{3}$,解关于x的不等式${f^{-1}}(x)<\frac{1}{3}$.

分析 (1)由已知得f(x)=$lo{g}_{a}\frac{1+x}{1-x}$,(-1<x<1),从而f(-x)=-f(x),进而f(x)为奇函数;当a>1时,f(x)单调递增,当0<a<1时,f(x)单调递减.
(2)由y=f(x)=$lo{g}_{a}\frac{1+x}{1-x}$,(-1<x<1),求出x=$\frac{{a}^{y}-1}{{a}^{y}+1}$,x,y互换,得到f(x)的反函数.
(3)由${f^{-1}}(1)=\frac{1}{3}$,求出a=2,由f(x)=$lo{g}_{2}\frac{1-x}{1+x}$单调递增,得到f-1(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$也单调递增,由此能求出关于x的不等式${f^{-1}}(x)<\frac{1}{3}$的解集.

解答 解:(1)∵f(x)=loga(1+x)-loga(1-x)(a>0,且a≠1),
∴f(x)=$lo{g}_{a}\frac{1+x}{1-x}$,(-1<x<1),
∴f(-x)=$lo{g}_{a}\frac{1-x}{1+x}$=-f(x),
故f(x)为奇函数,
当a>1时,f(x)单调递增,当0<a<1时,f(x)单调递减.(3分)
(2)∵y=f(x)=$lo{g}_{a}\frac{1+x}{1-x}$,(-1<x<1),
∴$\frac{1+x}{1-x}$=ay,整理,得:x=$\frac{{a}^{y}-1}{{a}^{y}+1}$,
x,y互换,得到f(x)的反函数${f^{-1}}(x)=\frac{{{a^x}-1}}{{{a^x}+1}}(x∈R)$.(5分)
(3)∵${f^{-1}}(1)=\frac{1}{3}$,∴$\frac{a-1}{a+1}=\frac{1}{3}$,解得a=2,
∴f(x)=$lo{g}_{2}\frac{1-x}{1+x}$单调递增,
故f-1(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$也单调递增,
∵f-1(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$$<\frac{1}{3}$=$\frac{2-1}{2+1}$.
∴x<1.
∴关于x的不等式${f^{-1}}(x)<\frac{1}{3}$的解集为{x|x<$\frac{1}{3}$}.(9分)

点评 本题考查函数的奇偶性和单调性的判断,考查反函数的求法,考查不等式的解法,是中档题,解题时要认真审题,注意对数函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知f(x+1)=x2-3x+2,则f(2)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将3个相同的红色玩偶和3个相同的黄色玩偶在展柜中自左向右排成一排,如果满足:从任何一个位置(含这个位置)开始向右数,数到最末一个玩偶,红色玩偶的个数大于或等于黄色玩偶的个数,就称这种排列为“有效排列”,则出现“有效排列”的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.实数x、y满足$\left\{\begin{array}{l}{y≤x}\\{2y≥x}\\{x+y≤4}\end{array}\right.$,目标函数z=2x-y+1的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{n}$=1与双曲线$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{m}$=1有相同的焦点,则动点P(n,m)的轨迹为(  )
A.椭圆的一部分B.双曲线的一部分C.抛物线的一部分D.直线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}的通项公式为${a_n}=\frac{1}{{{{(n+1)}^2}}}$,设f(n)=(1-a1)(1-a2)…(1-an),试求f(1),f(2),f(3),f(4)的值,推导出f(n)的公式,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=2cos2x-sinx的最大值是$\frac{17}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设A={x|x-1>0},B={x|x<a},若A∩B≠∅,则实数a的取值范围是(  )
A.a≤1B.a<1C.a≥1D.a>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)求经过直线l1:2x-y-3=0与l2:3x+y-1=0的交点且与直线x-8y+2=0垂直的直线方程;
 (2)已知点A(1,-2)和B(3,4)到经过点P(2,3)的直线距离相等,求该直线方程.

查看答案和解析>>

同步练习册答案