精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=3sin(2x+$\frac{π}{4}$)+1,将y=f(x)的图象向右平移φ(φ>0)个单位,使得到的图象关于y对称,则φ的最小值为$\frac{3π}{8}$.

分析 根据三角函数的图象关系求出函数的解析式,结合函数的对称性进行求解即可.

解答 解:将将y=f(x)的图象向右平移φ(φ>0)个单位得到y=3sin[2(x-φ)+$\frac{π}{4}$]+1=3sin(2x+$\frac{π}{4}$-2φ)+1,
若得到的图象关于y轴对称,
则$\frac{π}{4}$-2φ=$\frac{π}{2}$+kπ,k∈Z.
即φ=-$\frac{π}{8}$-$\frac{kπ}{2}$,k∈Z.
故当k=-1时,φ=-$\frac{π}{8}$+$\frac{π}{2}$=$\frac{3π}{8}$,
故答案为:$\frac{3π}{8}$.

点评 本题主要考查三角函数对称性的应用,根据三角函数平移关系求出函数的解析式是解决本题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.如果方程$\frac{x^2}{4-m}-\frac{y^2}{3-m}=1$表示焦点在y轴上的椭圆,则m的取值范围为$\frac{7}{2}$<m<4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知二项式${(\sqrt{x}-\frac{1}{{\root{3}{x}}})^5}$的展开式中常数项为(  )
A.-10B.6C.10D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等比数列{an}满足:a1+a2+a3+a4=$\frac{15}{8}$,a2•a3=-$\frac{9}{8}$,则$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+\frac{1}{{a}_{3}}+\frac{1}{{a}_{4}}$=(  )
A.-2B.-$\frac{5}{3}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.高三学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现在从中任选3人,要求这三人不能是同一个班级的学生,且在三班至多选1人,不同的选取法的种数为472.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知把函数g(x)=2sin2x的图象向右平移$\frac{π}{6}$个单位,在向上平移一个单位得到函数f(x)的图象.
(1)求f(x)的最小值及取最小值时x的集合;
(2)求f(x)在x∈[0,$\frac{π}{2}$]时的值域;
(3)若φ(x)=f(-x),求φ(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a,b∈R)对称,则ab的取值范围是(  )
A.(-∞,$\frac{1}{4}$]B.(0,$\frac{1}{4}$)C.(-$\frac{1}{4}$,0)D.[-$\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,将长$A{A^'}=3\sqrt{3}$,宽AA1=3的矩形沿长的三等分线处折叠成一个三棱柱,如图所示:
(1)求异面直线PQ与AC所成角的余弦值;
(2)求三棱锥A1-APQ的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=sin2(x+$\frac{π}{6}$)的最小正周期.

查看答案和解析>>

同步练习册答案