精英家教网 > 高中数学 > 题目详情
5.将函数f(x)=cosx-$\sqrt{3}sinx$(x∈R)的图象向左平移a(a>0)个单位长度后,所得的图象关于原点对称,则a的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

分析 首先通过三角函数的恒等变换,把函数的关系式变形成余弦型函数,进一步利用函数的平移变换和函数图象关于原点对称的条件求出结果.

解答 解:函数f(x)=cosx-$\sqrt{3}sinx$
=$2(\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx)$
=2cos(x+$\frac{π}{3}$),
函数图象向左平移a个单位得到:
g(x)=2cos(x+a+$\frac{π}{3}$)得到的函数的图象关于原点对称,
则:$a+\frac{π}{3}=kπ+\frac{π}{2}$,
解得:a=$kπ+\frac{π}{6}$(k∈Z),
当k=0时,${a}_{min}=\frac{π}{6}$,
故选:B.

点评 本题考查的知识要点:三角函数关系式的恒等变换,余弦型函数的图象变换,函数图象关于原点对称的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数y=xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,其中左焦点F(-2,0).
(Ⅰ)求出椭圆C的方程;
(Ⅱ)若直线y=x+m与曲线C交于不同的A、B两点,且线段AB的中点M在曲线x2+2y=2上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知抛物线C:y2=2px(p>0)的焦点为F,准线l与x轴的交点为M,点P(m,n)(m>p)在抛物线C上,且△FOP的外接圆圆心到准线l的距离为$\frac{3}{4}$.
(1)求抛物线C的方程;
(2)若直线PF与抛物线C交于另一点A,证明:kMP+kMA为定值;
(3)过点P作圆(x-1)2+y2=1的两条切线,与y轴分别交于D、E两点,求△PDE面积取得最小值时对应的m值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在棱长为3的正方体ABCD-A1B1C1D1中,P在线段BD1上,且$\frac{BP}{P{D}_{1}}=\frac{1}{2}$,M为线段B1C1上的动点,则三棱锥M-PBC的体积为(  )
A.1B.$\frac{3}{2}$C.$\frac{9}{2}$D.与M点的位置有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知实数x,y满足$\left\{\begin{array}{l}{2x+y≥0}\\{x-y≥0}\\{0≤x≤a}\end{array}\right.$,设b=x-2y,若b的最小值为-2,则b的最大值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给出一个如图所示的流程图,若要使输入的x值与输出的y值相等,则这样的x值的集合为{0,1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数z满足z(i-1)=(i+1)2(i为虚数单位),则z为(  )
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在公差不为零的等差数列{an}中,a1=2且a1、a2、a4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(-1)n+1($\frac{2}{{a}_{n}}$+$\frac{2}{{a}_{n+1}}$),求数列{bn}的前2n-1项的和T2n-1

查看答案和解析>>

同步练习册答案