精英家教网 > 高中数学 > 题目详情
15.已知函数y=xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是(  )
A.B.C.D.

分析 通过观察函数y=xf′(x)的图象即可判断f′(x)的符号以及对应的x的所在区间,从而判断出函数f(x)的单调性及单调区间,所以观察选项中的图象,找出符合条件的即可.

解答 解:由图象看出,-1<x<0,和x>1时xf′(x)>0;x≤-1,和0≤x≤1时xf′(x)≤0;
∴-1<x≤1时,f′(x)≤0;x>1,或x≤-1时,f′(x)≥0;
∴f(x)在(-1,1]上单调递减,在(-∞,-1],(1,+∞)上单调递增;
∴f(x)的大致图象应是B.
故选B.

点评 考查观察图象的能力,对于积的不等式xf′(x)≥0,(或xf′(x)≤0)的求解,函数导数符号和函数单调性的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知过点A(-1,2)的直线与圆(x-3)2+(y+2)2=1相交于M、N两点,则|AM|•|AN|=31.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将不等式x2+x-2<0的解集记为P,将由函数f(x)=x3-x的零点构成的集合记为M,则集合P∩M为(  )
A.{x|-1≤x≤0}B.{-1,0}C.{x|0≤x≤1}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示是某几何体的三视图(单位:cm).
(1)在这个几何体的直观图相应的位置标出字母A,B,C,D,A1,B1,C1,D1,P,Q;
(2)求这个几何体的表面积及体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)满足f(x)=f($\frac{1}{x}$),当x∈[1,3]时,f(x)=lnx,若在区间[$\frac{1}{3}$,3]内,曲线g(x)=f(x)-ax与x轴有三个不同的交点,则实数a的取值范围是(  )
A.(0,$\frac{1}{e}$)B.(0,$\frac{1}{2e}$)C.[$\frac{ln3}{3}$,$\frac{1}{e}$)D.[$\frac{ln3}{3}$,$\frac{1}{2e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列的通项公式是an=$\frac{n^2}{n^2+1}$,则0.98是数列的项吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用“五点法”作出函数y=1-2sinx,x∈[-π,π]的简图,并回答下列问题:
(1)观察函数图象.写出满足下列条件的x的区间,①y>1;②y<1.
(2)若直线y=a与y=1-2sinx,x∈[-π,π]有两个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设$[{\begin{array}{l}2\\ 3\end{array}}]$是矩阵$M=[{\begin{array}{l}a&2\\ 3&2\end{array}}]$的一个特征向量,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将函数f(x)=cosx-$\sqrt{3}sinx$(x∈R)的图象向左平移a(a>0)个单位长度后,所得的图象关于原点对称,则a的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案