| A. | (0,$\frac{1}{e}$) | B. | (0,$\frac{1}{2e}$) | C. | [$\frac{ln3}{3}$,$\frac{1}{e}$) | D. | [$\frac{ln3}{3}$,$\frac{1}{2e}$) |
分析 作出函数的图象,结合函数的图象解答即可.
解答
解:设x∈[$\frac{1}{3}$,1],
则$\frac{1}{x}$∈[1,3]时,
又f(x)=f($\frac{1}{x}$)=ln($\frac{1}{x}$)=-lnx,
∴函数f(x)的图象如图所示:
当a≤0时,显然,不合乎题意,
当a>0时,如图示,
当x∈($\frac{1}{3}$,1]时,存在一个零点,
当1<x<3时,f(x)=lnx,
可得g(x)=lnx-ax,(x∈(1,3])
g′(x)=$\frac{1}{x}$-a=$\frac{1-ax}{x}$,
若g′(x)<0,可得x>$\frac{1}{a}$,g(x)为减函数,
若g′(x)>0,可得x<$\frac{1}{a}$,g(x)为增函数,
此时f(x)必须在[1,3]上有两个零点,
∴$\left\{\begin{array}{l}{g(\frac{1}{a})>0}\\{g(3)≤0}\\{g(1)≤0}\end{array}\right.$
解得,$\frac{ln3}{3}≤a<\frac{1}{e}$.
故选C.
点评 本题重点考查函数的零点,属于中档题,难度中等.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{3}{2}$ | C. | $\frac{9}{2}$ | D. | 与M点的位置有关 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com