精英家教网 > 高中数学 > 题目详情
14.用乘法原理求出(a+b+c)5的项数.

分析 问题转化为8个名额分三组,每组至少一个的问题,用隔板法可得.

解答 解:∵展开式的每一项总是形如axbycz的形式,且x+y+z=5,其中x,y,z均为非负整数,
将x,y,z每个数都加上1,这样就转化为不定解方程x+y+z=8的正整数解的个数问题,
也等价于8个名额分三组,每组至少一个的问题,
∴由隔板法可得8个名额中间的7个空插入2个隔板即可.
∴方法种数为${C}_{7}^{2}$=21,即(a+b+c)5的项数为21项.

点评 本题考查计数原理,转化并采用隔板法是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求证:对任意的正整数n,不等式(2n+1)n≥(2n)n+(2n-1)n成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.双曲线$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{4}$=1的渐近线上一点A到双曲线的右焦点F的距离等于2,抛物线y2=2px(p>0)过点A,则该抛物线的方程为(  )
A.y2=9xB.y2=4xC.y2=$\frac{4\sqrt{13}}{13}$xD.y2=$\frac{2\sqrt{13}}{13}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知Sn表示等差数列{an}的前n项和,且$\frac{{a}_{1}}{{a}_{5}}$=$\frac{3}{7}$,那么$\frac{{S}_{5}}{{S}_{20}}$=$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知i是虚数单位,则$\frac{2-i}{1+2i}$=-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将不等式x2+x-2<0的解集记为P,将由函数f(x)=x3-x的零点构成的集合记为M,则集合P∩M为(  )
A.{x|-1≤x≤0}B.{-1,0}C.{x|0≤x≤1}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.停车场一排有12个空位,如今要停放7辆不同的车,要求恰好有4个空位连在一起,求共有多少种停法?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)满足f(x)=f($\frac{1}{x}$),当x∈[1,3]时,f(x)=lnx,若在区间[$\frac{1}{3}$,3]内,曲线g(x)=f(x)-ax与x轴有三个不同的交点,则实数a的取值范围是(  )
A.(0,$\frac{1}{e}$)B.(0,$\frac{1}{2e}$)C.[$\frac{ln3}{3}$,$\frac{1}{e}$)D.[$\frac{ln3}{3}$,$\frac{1}{2e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.
(Ⅰ)求证:AC⊥平面BCE;
(Ⅱ)求三棱锥A-CDE的体积;
(Ⅲ)线段EF上是否存在一点M,使得BM⊥CE?若存在,确定M点的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案