精英家教网 > 高中数学 > 题目详情
11.如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.
(Ⅰ)求证:AC⊥平面BCE;
(Ⅱ)求三棱锥A-CDE的体积;
(Ⅲ)线段EF上是否存在一点M,使得BM⊥CE?若存在,确定M点的位置;若不存在,请说明理由.

分析 (I)如图所示,取AB的中点N,连接CN,可得四边形ADCN是正方形,可得NA=NB=NC,可得AC⊥CB,利用AF⊥平面ABCD,AF∥BE,可得BE⊥平面ABCD,即可证明.
(II)利用V三棱锥A-CDE=V三棱锥E-ACD=$\frac{1}{3}BE•{S}_{ACD}$即可得出.
(III)线段EF上存在一点M为线段EF的中点,使得BM⊥CE.连接MN,BM,EN,则四边形BEMN为正方形,可得BM⊥EN,利用线面面面垂直的判定与性质定理可得:
CN⊥平面ABEF,可得CN⊥BM,又BM⊥CE.即可证明BM⊥平面CEN.

解答 (I)证明:如图所示,取AB的中点N,连接CN,
则四边形ADCN是正方形,可得NA=NB=NC,
∴AC⊥CB,
∵AF⊥平面ABCD,AF∥BE,
∴BE⊥平面ABCD,
∴BE⊥AC,
又BE∩BC=B,
∴AC⊥平面BCE.
(II)解:V三棱锥A-CDE=V三棱锥E-ACD=$\frac{1}{3}BE•{S}_{ACD}$=$\frac{1}{3}×2×\frac{1}{2}×{2}^{2}$=$\frac{4}{3}$.
(III)解:线段EF上存在一点M为线段EF的中点,使得BM⊥CE.
连接MN,BM,EN,则四边形BEMN为正方形,
∴BM⊥EN,
∵CN⊥AB,平面ABEF⊥平面ABCD,平面ABEF∩平面ABCD=AB,
∴CN⊥平面ABEF,
∴CN⊥BM,
又CN∩EN=N,
∴BM⊥平面CEN,
∴BM⊥CE.

点评 本题考查了线面面面垂直的判定与性质定理、正方形的判定与性质定理、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.用乘法原理求出(a+b+c)5的项数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知递增数列{an}各项均为正数,其前n项和为Sn,且Sn=$\frac{1}{4}$an2+n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}的通项bn=$\frac{1}{n+{S}_{n}}$,其前n项和为Tn,求证:Tn$<\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某大型连锁商厦对自己的员工购买本商厦的物品,实行每月一号两种奖励,第一种u:在规定的商品范围内自由挑选一件,第二种v:送积分,月末发奖金(二选一),调查资料表明,凡是在本月一号选u的员工,下月一号会有40%改选v,而选v的员工,下月一号则有50%改选u,若此商厦共有1800名员工,用un、vn分别表示在第n(n为正整数)个月一号选u,v优惠方式的人数.
(1)试以un表示un+1
(2)若u1=0,求数列{un}、{vn}的通项公式;
(3)在(2)的情况下,问第几个月是一号,选u与选v奖励方式人数相等.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等且$\frac{{V}_{1}}{{V}_{2}}$=$\frac{3}{2}$,则$\frac{{S}_{1}}{{S}_{2}}$的值是$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,其中左焦点F(-2,0).
(Ⅰ)求出椭圆C的方程;
(Ⅱ)若直线y=x+m与曲线C交于不同的A、B两点,且线段AB的中点M在曲线x2+2y=2上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=$\left\{\begin{array}{l}{3,x≥m}\\{{x}^{2}+4x+2,x<m}\end{array}\right.$,函数g(x)=f(x)-x恰有三个零点,则实数m的取值范围为(  )
A.[-2,3]B.[-1,3]C.(-2,3]D.(-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在棱长为3的正方体ABCD-A1B1C1D1中,P在线段BD1上,且$\frac{BP}{P{D}_{1}}=\frac{1}{2}$,M为线段B1C1上的动点,则三棱锥M-PBC的体积为(  )
A.1B.$\frac{3}{2}$C.$\frac{9}{2}$D.与M点的位置有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在数列{an}中,a1=1,an+1•an=an-an+1
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=ln$\frac{{a}_{n+2}}{{a}_{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案