精英家教网 > 高中数学 > 题目详情
6.设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等且$\frac{{V}_{1}}{{V}_{2}}$=$\frac{3}{2}$,则$\frac{{S}_{1}}{{S}_{2}}$的值是$\frac{9}{4}$.

分析 设出两个圆柱的底面半径与高,通过侧面积相等和体积比推出底面半径的比,然后求解底面积的比.

解答 解:设两个圆柱的底面半径分别为R,r;高分别为H,h;
∵$\frac{{V}_{1}}{{V}_{2}}$=$\frac{π{R}^{2}H}{π{r}^{2}h}=\frac{3}{2}$,①
由侧面积相等得$\frac{2πRH}{2πrh}=1$,②
∴①÷②得$\frac{R}{r}=\frac{3}{2}$,
则$\frac{{S}_{1}}{{S}_{2}}$=$\frac{π{R}^{2}}{π{r}^{2}}=\frac{{R}^{2}}{{r}^{2}}=\frac{9}{4}$.
故答案为:$\frac{9}{4}$.

点评 本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知i是虚数单位,则$\frac{2-i}{1+2i}$=-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对于直线m,n和平面α,下列说法中正确的是(  )
A.若m∥α,n∥α,m,n共面,则m∥nB.若m?α,n∥α,m,n共面,则m∥n
C.若m?α,n?a,m,n异面,则m∥nD.若m?α,n?α,m,n异面,则m与n相交

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=2ax2+bx-3a+1,当x∈[-4,4]时,f(x)≥0恒成立,则5a+b最值为最大值为$\frac{17}{21}$;最小值为-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图是某中学参加高三体育考试的学生中抽取60名学生的体育成绩(均为整数)的频率分布直方图,该直方图恰好缺少了成绩在区间[70,80)内的图形,根据图中的信息回答下列问题:
(1)求成绩在区间[70,80)内的概率,并补全这个频率分布直方图,估计这次考试的及格率(60分以上及格);
(2)假设成绩在[80,90)内的学生中有$\frac{2}{3}$的成绩在85分以下(不含85分),从成绩在[80,90)内的学生中选出两人,求恰好有1人的成绩在[85,90)(含85分)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.
(Ⅰ)求证:AC⊥平面BCE;
(Ⅱ)求三棱锥A-CDE的体积;
(Ⅲ)线段EF上是否存在一点M,使得BM⊥CE?若存在,确定M点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在五面体ABCDEF中,四边形 ABCD是边长为4的正方形,EF∥AD,平面ADEF⊥平面ABCD,且BC=2EF,AE=AF,点G是EF的中点.
(1)证明:AG⊥平面ABCD.
(2)若直线BF与平面ACE所成角的正弦值为$\frac{\sqrt{6}}{9}$,求AG 的长.
(3)判断线段AC上是否存在一点M,使MG∥平面ABF?若存在,求出$\frac{AM}{MC}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.2015年央视3.15晚会中关注了4S店的小型汽车维修保养,公共wifi的安全性,网络购物等问题,某网站对上述三个问题进行了满意度的问卷调查,结果如下:
4S店的小型汽车维修保养公共wifi的安全性网络购物
满意200人400人800人
不满意400人100人400人
(Ⅰ)在所有参与该问卷调查的人员中,用分层抽样的方法抽取n人,其中有8人不满意4S店的小型汽车维修保养,求n的值;
(Ⅱ)在对参与网络购物满意度调查的人员中,用分层抽样的方法抽取6人,再从这6人中任意选取2人,求恰有1人对网络购物满意的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,若输入的a的值为3,则输出的i=(  )
A.7B.6C.5D.4

查看答案和解析>>

同步练习册答案