精英家教网 > 高中数学 > 题目详情
7.用“五点法”作出函数y=1-2sinx,x∈[-π,π]的简图,并回答下列问题:
(1)观察函数图象.写出满足下列条件的x的区间,①y>1;②y<1.
(2)若直线y=a与y=1-2sinx,x∈[-π,π]有两个交点,求a的取值范围.

分析 (1)用五点作图法画出函数图象,观察图象,即可写出满足条件的x的区间;
(2)根据图象,用数形结合,判断交点个数.即可求出a的取值范围.

解答 解:用“五点法”作出函数y=1-2sinx,x∈[-π,π]的简图:列表为

 x-$\frac{π}{2}$0 $\frac{π}{2}$π
2sinx0-220
 y=1-sinx131-11
画出图形,如图:

(1)观察函数图象.满足①y>1的x的区间是:(-π,0)
满足②y<1的x的区间是:(0,π),
(2)若直线y=a与y=1-2sinx,x∈[-π,π]有两个交点,由图象可知:
当1<a<3时,直线y=a与y=1-2sinx,x∈[-π,π]有两个交点,
当-1<a<1时,直线y=a与y=1-2sinx,x∈[-π,π]有两个交点,
故a的取值范围是:(-1,1)∪(1,3).

点评 本题考查了正弦函数的图象,考查了五点作图法,数形结合思想是高中重要的一种思想,应熟练灵活掌握,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知f(x)=xsinx+(ax+b)cosx,试确定常数a,b使得f′(x)=xcosx-sinx成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sin(α+$\frac{π}{4}$)=$\frac{3}{5}$,$\frac{π}{4}<α<\frac{3π}{4}$,则sinα=$\frac{7\sqrt{2}}{10}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数y=xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知递增数列{an}各项均为正数,其前n项和为Sn,且Sn=$\frac{1}{4}$an2+n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}的通项bn=$\frac{1}{n+{S}_{n}}$,其前n项和为Tn,求证:Tn$<\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.
(1)求数列{an}的公差d的取值范围;
(2)求数列{an}的前n项和为Sn取得最大值时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某大型连锁商厦对自己的员工购买本商厦的物品,实行每月一号两种奖励,第一种u:在规定的商品范围内自由挑选一件,第二种v:送积分,月末发奖金(二选一),调查资料表明,凡是在本月一号选u的员工,下月一号会有40%改选v,而选v的员工,下月一号则有50%改选u,若此商厦共有1800名员工,用un、vn分别表示在第n(n为正整数)个月一号选u,v优惠方式的人数.
(1)试以un表示un+1
(2)若u1=0,求数列{un}、{vn}的通项公式;
(3)在(2)的情况下,问第几个月是一号,选u与选v奖励方式人数相等.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,其中左焦点F(-2,0).
(Ⅰ)求出椭圆C的方程;
(Ⅱ)若直线y=x+m与曲线C交于不同的A、B两点,且线段AB的中点M在曲线x2+2y=2上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给出一个如图所示的流程图,若要使输入的x值与输出的y值相等,则这样的x值的集合为{0,1,3}.

查看答案和解析>>

同步练习册答案