13£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬Æä×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÒÔÔ­µãOΪԲÐÄ£¬ÍÖÔ²µÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÓëÖ±Ïßx-y+$\sqrt{2}$=0ÏàÇУ®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£®
£¨2£©¹ýµãF2×÷²»ÓëxÖáÖØºÏµÄÖ±Ïß½»ÍÖÔ²ÓÚM£¬NÁ½¸ö²»Í¬µÄµã£¬Çó¡÷0MNÃæ»ýSµÄ×î´óÖµ£®

·ÖÎö £¨1£©Ô²Ðĵ½Ö±Ïßx-y+$\sqrt{2}$=0µÄ¾àÀëd=$\frac{|0-0+\sqrt{2}|}{\sqrt{1+1}}$=1£¬´Ó¶øÈ·¶¨b=1£¬´Ó¶øÇ󷽳̣»
£¨2£©ÉèÖ±ÏßMNµÄ·½³ÌΪx-1=ay£¬´Ó¶øÁªÁ¢·½³Ì»¯¼òµÃ£¨a2+2£©y2+2ay-1=0£¬´Ó¶ø¿ÉµÃy1+y2=-$\frac{2a}{{a}^{2}+2}$£¬y1y2=-$\frac{1}{{a}^{2}+2}$£¬´Ó¶ø»¯¼òµÃ|y1-y2|max=$\sqrt{2}$£¬´Ó¶øÇóÃæ»ýµÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©Ô²Ðĵ½Ö±Ïßx-y+$\sqrt{2}$=0µÄ¾àÀëd=$\frac{|0-0+\sqrt{2}|}{\sqrt{1+1}}$=1£¬
¹Êb=1£¬
ÓÖ¡ße=$\frac{\sqrt{2}}{2}$£¬
¡àc=1£¬a=$\sqrt{2}$£¬
¹ÊÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£®
£¨2£©ÉèÖ±ÏßMNµÄ·½³ÌΪx-1=ay£¬
ÁªÁ¢·½³Ì¿ÉµÃ$\left\{\begin{array}{l}{x=1+ay}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬
£¨a2+2£©y2+2ay-1=0£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
¹Êy1+y2=-$\frac{2a}{{a}^{2}+2}$£¬y1y2=-$\frac{1}{{a}^{2}+2}$£¬
¹Ê£¨y1-y2£©2=£¨y1+y2£©2-4y1y2
=$\frac{4{a}^{2}}{£¨{a}^{2}+2£©^{2}}$+4$\frac{1}{{a}^{2}+2}$
=$\frac{8{a}^{2}+8}{£¨{a}^{2}+2£©^{2}}$=8£¨-$\frac{1}{£¨{a}^{2}+2£©^{2}}$+$\frac{1}{{a}^{2}+2}$£©
=-8£¨$\frac{1}{{a}^{2}+2}$-$\frac{1}{2}$£©2+2£¬
¹Ê|y1-y2|max=$\sqrt{2}$£¬
¶øS=$\frac{1}{2}$|OF2|£¨|y1|+|y2|£©
=$\frac{1}{2}$|OF2||y1-y2|
¡Ü$\frac{1}{2}$•1•$\sqrt{2}$=$\frac{\sqrt{2}}{2}$£®
¹Ê¡÷0MNÃæ»ýSµÄ×î´óֵΪ$\frac{\sqrt{2}}{2}$£®

µãÆÀ ±¾Ì⿼²éÁËÊýÐνáºÏµÄ˼ÏëÓ¦Óü°ÍÖÔ²ÓëÖ±ÏßµÄλÖùØÏµÓ¦Óã¬Í¬Ê±¿¼²éÁËѧÉúµÄ»¯¼òÔËËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®¿Õ¼äËıßÐÎABCDµÄÁ½Ìõ¶ÔÀâAC£¬BD»¥Ïà´¹Ö±£¬AC£¬BDµÄ³¤·Ö±ðΪ8ºÍ2£¬ÔòƽÐÐËıßÐÎÁ½Ìõ¶ÔÀâµÄ½ØÃæËıßÐÎEFGHÔÚÆ½Òƹý³ÌÖУ¬Ãæ»ýµÄ×î´óÖµÊÇ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®µ±n¡ÊN£¬ÇÒn£¾1ʱ£¬ÇóÖ¤£º2£¼£¨1+$\frac{1}{n}$£©n£¼3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÈôµãP£¨1£¬2£©ÔÚÒÔ×ø±êÔ­µãΪԲÐĵÄÔ²ÉÏ£¬Ôò¸ÃµãÔÚµãP´¦µÄÇÐÏß·½³ÌÊÇ£¨¡¡¡¡£©
A£®x+2y-5=0B£®x-2y+3=0C£®2x+y-4=0D£®2x-y=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÍÖÔ²µÄ³¤ÖáΪ4£¬ÇÒÒÔË«ÇúÏß$\frac{{x}^{2}}{2}$-y2=1µÄ¶¥µãΪÍÖÔ²µÄ½¹µã£¬Ò»Ö±ÏßÓëÍÖÔ²ÏཻÓÚA¡¢BÁ½µã£¬ÏÒABµÄÖеã×ø±êÊÇ£¨1£¬1£©£®Çó£º
£¨1£©ÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©ÏÒABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªÊýÁÐ{an}µÄͨÏʽΪan=-8£¨$\frac{1}{8}$£©n+9£¨$\frac{1}{4}$£©n-3£¨$\frac{1}{2}$£©n£¨ÆäÖÐn¡ÊN*£©£¬ÈôµÚmÏîÊÇÊýÁÐ{an}ÖеÄ×îСÏÔòam=-$\frac{5}{16}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®f£¨x£©=£¨x-a£©£¨x-b£©£¨x-c£©£¬Ôò$\frac{{a}^{2}}{f¡ä£¨a£©}$$+\frac{{b}^{2}}{f¡ä£¨b£©}$$+\frac{{c}^{2}}{f¡ä£¨c£©}$=£¨¡¡¡¡£©
A£®1B£®-1C£®a+b+cD£®ab+bc+ca

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Éè¦ÁΪÈñ½Ç£¬ÇÒlg£¨1-cos¦Á£©=m£¬lg£¨1+cos¦Á£©=n£¬Çólgsin¦Á£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑ֪żº¯Êýf£¨x£©ÔÚ[0£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬Èôf£¨2x-1£©£¾f£¨$\frac{5}{3}$£©³ÉÁ¢£¬ÔòxµÄȡֵ·¶Î§ÊÇ-$\frac{1}{3}$£¼x£¼$\frac{4}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸