精英家教网 > 高中数学 > 题目详情
11.已知数列{an}是公差不为0的等差数列,a1=1,且a2,a4-2,a6成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{3}{(n+1)({a}_{n}+2)}$(n∈N+),求数列{bn}的前n项和Sn

分析 (I)利用等差数列与等比数列的通项公式即可得出;
(II)利用“裂项求和”即可得出.

解答 解:(I)设等差数列{an}的公差为d≠0,
∵a2,a4-2,a6成等比数列.
∴$({a}_{4}-2)^{2}={a}_{2}•{a}_{6}$,
∴(1+3d-2)2=(1+d)(1+5d),
化为d2-3d=0,又d≠0,
解得d=3.
∴an=1+3(n-1)=3n-2.
(II)bn=$\frac{3}{(n+1)({a}_{n}+2)}$=$\frac{3}{(n+1)(3n-2+2)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴数列{bn}的前n项和Sn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.

点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知($\root{3}{x}$+x22n的展开式的二项式系数之和比(3x-1)n的展开式的二项系数之和大992.求(2x+$\frac{1}{x}$)2n的展开式中:
(1)常数项;
(2)系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\overrightarrow{p}$与$\overrightarrow{q}$是两个夹角为60°的单位向量,且2$\overrightarrow{p}$-$\overrightarrow{q}$与k$\overrightarrow{p}$+$\overrightarrow{q}$的夹角为120°,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知cos($\frac{π}{4}$-α)=$\frac{3}{5}$,sin($\frac{π}{4}$+β)=-$\frac{12}{13}$,α∈($\frac{π}{4}$,$\frac{3π}{4}$),β∈(π,$\frac{5π}{4}$),则sin(α+β)=-$\frac{56}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.n为正整数,求证:1•(n+1)+2•n+3•(n-1)+…+(n+1)•1=$\frac{1}{6}$(n+1)(n+2)(n=3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.甲、乙两同学参加某闯关游戏,规则如下:游戏分三关,每过一关都有相应的积分奖励,闯过第一关可以赢得5个积分,不过则积分为0.闯过前两关可以赢得10个积分,三关全过获得30个积分,任何一关闯关失败游戏自动终止.已知甲过每关的概率均为$\frac{2}{3}$,乙过前2关的概率均为$\frac{1}{2}$,过第三关的概率为$\frac{3}{4}$,且各关能否闯关互不影响.
(1)求甲、乙共获得30个积分的概率;
(2)求乙所获积分ξ的分布列和数学期望E(ξ)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知锐角α,钝角β的始边都是x轴的非负半轴,终边分别与单位圆交于点P($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),Q(-$\frac{3}{5}$,$\frac{4}{5}$)
(1)求sin∠POQ;
(2)设函数f(x)=2$\sqrt{3}{cos^2}$x+sin2x,x∈[0,α],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知z=1+i,a,b为实数.若ω=z2$+3\overline{z}$-4,求|ω|;
(2)求由直线x=1,x=2,曲线y=x2及x轴所围图形的面积.

查看答案和解析>>

同步练习册答案