3£®ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÔÔ­µãΪ¼«µã£¬xÖá·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=6cos¦È
£¨1£©ÈôlµÄ²ÎÊý·½³ÌÖеÄt=$\sqrt{2}$ʱ£¬µÃµ½Mµã£¬ÇóMµÄ¼«×ø±êºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôµãP£¨1£¬1£©£¬lºÍÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó$\frac{1}{|PA|}+\frac{1}{|PB|}$£®

·ÖÎö £¨1£©t=$\sqrt{2}$´úÈëÖ±ÏßlµÄ²ÎÊý·½³ÌÇó³öM£¨0£¬2£©£¬´Ó¶øÇó³öµãMµÄ¼«×ø±ê£¬ÓÉÇúÏßCµÄ¼«×ø±ê·½³ÌÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÁªÁ¢Ö±ÏßlµÄ²ÎÊý·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌµÃ${t}^{2}+3\sqrt{2}t-4=0$£¬ÓÉ´ËÀûÓÃΤ´ï¶¨ÀíÄÜÇó³ö$\frac{1}{|PA|}+\frac{1}{|PB|}$µÄÖµ£®

½â´ð ½â£º£¨1£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
lµÄ²ÎÊý·½³ÌÖеÄt=$\sqrt{2}$ʱ£¬µÃµ½Mµã£¬
¡àµãMµÄÖ±½Ç×ø±êΪM£¨0£¬2£©£¬
¡à$¦Ñ=\sqrt{0+4}=2$£¬$¦È=\frac{¦Ð}{2}$£¬¡àµãMµÄ¼«×ø±êΪM£¨2£¬$\frac{¦Ð}{2}$£©£¬
¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=6cos¦È£¬¼´¦Ñ2=6¦Ñcos¦È£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2-6x+y2=0£®
£¨2£©ÁªÁ¢Ö±ÏßlµÄ²ÎÊý·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌµÃ£º
${t}^{2}+3\sqrt{2}t-4=0$£¬
Ôò$\left\{\begin{array}{l}{{t}_{1}+{t}_{2}=-3\sqrt{2}}\\{{t}_{1}{t}_{2}=-4£¼0}\end{array}\right.$£¬
¡à$\frac{1}{|PA|}+\frac{1}{|PB|}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}|+|{t}_{2}|}{|{t}_{1}{t}_{2}|}$
=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{34}}{4}$£®

µãÆÀ ±¾Ì⿼²éµãµÄ¼«×ø±êºÍÇúÏߵļ«×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤µÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³Ì»¥»¯¹«Ê½µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®½«º¯Êýf£¨x£©=sin2x+$\sqrt{3}$cos2xͼÏóÉÏËùÓеãÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶È£¬µÃµ½º¯Êýg £¨x£©µÄͼÏó£¬Ôòg£¨x£©Í¼ÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄÊÇ£¨¡¡¡¡£©
A£®£¨$\frac{¦Ð}{3}$£¬0£©B£®£¨ $\frac{¦Ð}{4}$£¬0£©C£®£¨-$\frac{¦Ð}{12}$£¬0£©D£®£¨$\frac{¦Ð}{2}$£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èçͼ1£¬ABCDÊDZ߳¤Îª2µÄÕý·½ÐΣ¬µãE£¬F·Ö±ðΪBC£¬CDµÄÖе㣬½«¡÷ABE£¬¡÷ECF£¬¡÷FDA·Ö±ðÑØAE£¬EF£¬FAÕÛÆð£¬Ê¹B£¬C£¬DÈýµãÖØºÏÓÚµãP£¬ÈôËÄÃæÌåPAEFµÄËĸö¶¥µãÔÚͬһ¸öÇòÃæÉÏ£¬Ôò¸ÃÇòµÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®$\sqrt{6}¦Ð$B£®6¦ÐC£®$4\sqrt{3}¦Ð$D£®12¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑ֪ͼÖСÏAOC+2¡ÏBOC=¦Ð£¬|$\overrightarrow{OA}$|=|$\overrightarrow{OC}$|£¬BC¡ÎOA£¬PΪͼÖеÄÒõÓ°ÖУ¨º¬±ß½ç£©ÈÎÒâµã£¬²¢ÇÒ$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OC}$£¬ÏÂÁÐÕýÈ·µÄÊÇ¢Ù¢Û¢Ý
¢Ù0¡Üx+y¡Ü1£»
¢Ú|x|+|y|¡Üx2+y2£»
¢Ûx2+y2¡Ü2£»
¢Ü´æÔÚÎÞÊý¸öµãP£¬Ê¹µÃx=-1£»
¢Ý´æÔÚÎÞÊý¸öµãP£¬Ê¹µÃy=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÖ±Ïßl¹ý¶¨µãP£¨1£¬1£©£¬ÇÒÇãб½ÇΪ$\frac{¦Ð}{4}$£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ×ø±êϵÖУ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=2cos¦È+\frac{3}{¦Ñ}$£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌÓëÖ±ÏßlµÄ²ÎÊý·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßCÏཻÓÚ²»Í¬µÄÁ½µãA£¬B£¬Çó|AB|¼°|PA|•|PB|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®½«Ô²x2+y2=1ÉÏÿһµãµÄ×Ý×ø±ê²»±ä£¬ºá×ø±ê±äΪԭÀ´µÄ$\frac{1}{3}$£¬µÃÇúÏßC£®
£¨¢ñ£©Ð´³öCµÄ²ÎÊý·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßl£º3x+y+1=0ÓëCµÄ½»µãΪP1¡¢P2£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Çó¹ýÏß¶ÎP1P2µÄÖеãÇÒÓël´¹Ö±µÄÖ±Ïߵļ«×ø±ê·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=lnx-2ax£¨ÆäÖÐa¡ÊR£©£®
£¨¢ñ£©Èôº¯Êýf£¨x£©µÄͼÏóÔÚx=1´¦µÄÇÐÏ߯½ÐÐÓÚÖ±Ïßx+y-2=0£¬Çóº¯Êýf£¨x£©µÄ×î´óÖµ£»
£¨¢ò£©Éèg£¨x£©=f£¨x£©+$\frac{1}{2}$x2£¬ÇÒº¯Êýg£¨x£©Óм«´óÖµµãx0£¬ÇóÖ¤£ºx0f£¨x0£©+1+ax02£¾0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª¼¯ºÏM={x¡ÊZ|-x2+3x£¾0}£¬N={x|x2-4£¼0}£¬ÔòM¡ÉN=£¨¡¡¡¡£©
A£®£¨0£¬2£©B£®£¨-2£¬0£©C£®{1£¬2}D£®{1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÒÑÖªÈýÀâ×¶A-OCBÖУ¬AO¡Íµ×ÃæBOC£¬ÇÒ¡ÏBAO=¡ÏCAO=$\frac{¦Ð}{6}$£¬AB=4£¬µãDΪÏß¶ÎABµÄÖе㣬¼Ç¶þÃæ½ÇB-AO-CµÄ´óСΪ¦È£®
£¨1£©ÇóÈýÀâ×¶A-OCBÌå»ýVµÄ×î´óÖµ£»
£¨2£©µ±$¦È=\frac{2¦Ð}{3}$ʱ£¬Çó¶þÃæ½ÇC-OD-BµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸