精英家教网 > 高中数学 > 题目详情
已知点(-1,-1)在直线ax+by+2=0(a>0,b>0)上,则
1
a
+
1
b
的最小值为(  )
A、1B、2C、3D、4
考点:基本不等式在最值问题中的应用
专题:综合题,不等式的解法及应用
分析:利用点与直线的关系,可得a+b=2,再利用“乘1法”和基本不等式的性质即可得出.
解答: 解:∵点(-1,-1)在直线ax+by+2=0(a>0,b>0)上,
∴-a-b+2=0,化为a+b=2.
1
a
+
1
b
=
1
2
(a+b)(
1
a
+
1
b
)=1+
1
2
b
a
+
a
b
)≥2,当且仅当a=1,b=1时取等号.
1
a
+
1
b
的最小值2.
故选B.
点评:熟练掌握点与直线的关系、“乘1法”和基本不等式的性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若1,a,b,c,9成等比数列,则(  )
A、b=3,ac=9
B、b=-3,ac=9
C、b=3,ac=-9
D、b=-3,ac=-9

查看答案和解析>>

科目:高中数学 来源: 题型:

直线
x=3-
3
2
t
y=1+
1
2
t
(t为参数)的倾斜角是(  )
A、
π
6
B、
π
3
C、
6
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在回归分析中,相关指数R2越接近1,说明(  )
A、两个变量的线性相关关系越强
B、两个变量的线性相关关系越弱
C、回归模型的拟合效果越好
D、回归模型的拟合效果越差

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-2,1),
b
=(1,m),且
a
b
,则m等于(  )
A、2
B、
1
2
C、-2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足|z+3+4i|=6,则|z|的最小值和最大值分别为(  )
A、1和11B、0和11
C、5和6D、0和1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是奇函数,当x>0时,f(x)=2x(1-x),当x<0时f(x)应该等于(  )
A、-2x(1-x)
B、2x(1-x)
C、-2x(1+x)
D、2x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列事件是必然事件的是(  )
A、某体操运动员将在某次运动会上获得全能冠军
B、一个三角形的大边对的角小,小边对的角大
C、如果a>b,那么b<a
D、某人购买福利彩票中奖

查看答案和解析>>

科目:高中数学 来源: 题型:

对于研究两个事件A与B关系的统计量x2,下列说法正确的是(  )
A、x2越大,说明“A与B有关系”的可信度越小
B、x2越小,说明“A与B有关系”的可信度越小
C、x2越大,说明“A与B无关”的程度越大
D、x2接近于0,说明“A与B无关”的程度越小

查看答案和解析>>

同步练习册答案