精英家教网 > 高中数学 > 题目详情
20.利用五点法作出f(x)=1+2sinx图象,x∈[0,2π],并指出f(x)与直线y=1的交点个数有几个.

分析 用五点作图法作出f(x)在一个周期内的图象,由图象即可得解交点的个数.

解答 解:列表如下:

 x 0$\frac{π}{2}$ π$\frac{3π}{2}$ 2π
sinx01-10
 y=1+2sinx131-11
描点,连线,画出图形如下:

由图象可知,f(x)与直线y=1的交点个数有3个.

点评 本题考查的知识点是五点法作函数y=Asin(ωx+φ)的图象,其中描出五个关键点的坐标是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某校为了解一段时间内学生“学习习惯养成教育”情况,随机抽取了100名学生进行测试,用“十分制”记录他们的测试成绩,若所得分数不低于8分,则称该学生“学习习惯良好”,学生得分情况统计如表:
 分数[6.0,7.0)[7.0,8.0)[8.0,9.0)[9.0,10.0]
 频数 1015  5025 
(1)请在答题卡上完成学生得分的频率分布直方图,并估计学生得分的平均分$\overline{x}$(同一组中的数据用该区间的中点值作代表);
(2)若用样本去估计总体的分布,请对本次“学习习惯养成教育活动”作出评价.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知双曲线C过点A(-$\sqrt{15}$,1),且与x2-3y2=1有相同的渐近线.
(1)求双曲线C的标准方程;
(2)过双曲线C的一个焦点作倾斜角为45°的直线l与双曲线交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sinωx•cosωx+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{2}$(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为$\frac{π}{4}$,若关于x的方程f(x)+k=0在区间[0,$\frac{π}{4}$]上有两个不同的实数解,则实数k的取值范围为(  )
A.(-1,1)B.($\frac{\sqrt{3}}{2}$,1)C.(-1,-$\frac{\sqrt{3}}{2}$]D.(-1,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2$\sqrt{3}$sinx•cosx-2sin2x+1(x∈R)
(1)设函数g(x)=f(x+$\frac{φ}{2}$),φ∈(0,π),若g(x)为偶函数,求g(x)最大值及相应的x值的集合.
(2)将函数f(x)的图象向右平移$\frac{π}{4}$个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=h(x)的图象,若关于x的方程h(x)+k=0,在区间[0,π]上有实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.实数m为何值时,复数Z=(m2+5m+6)+(m2-2m-15)i对应的点在:
(1)实轴上;
(2)在第一象限;
(3)直线x+y+4=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知c>0且c≠1,设命题p:“函数y=(2c-1)•cx在R上为减函数”,命题q:“不等式x+(x-2c)2≤1的解集为∅”,若“p∧q”为真命题,求实数c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.满足z+$\frac{10}{z}$是实数,且z+4的实部与虚部互为相反数的虚数z是否存在,若存在,求出虚数z;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列各函数的导数.
(1)y=(3x2-4x)(2x+1);
(2)y=x2sinx;
(3)y=$\frac{lnx}{{x}^{2}+1}$;
(4)y=($\sqrt{x}$+1)($\frac{1}{\sqrt{x}}$-1).

查看答案和解析>>

同步练习册答案