精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数
(1)求的最大值;
(2)设△中,角的对边分别为,若
求角的大小.

(1);(2)

解析试题分析:(1)       ………2分
.(注:也可以化为) …4分
的最大值为.        ………………………………6分
(2)因为,由(1)和正弦定理,得.…………7分
,所以,即, ………………8分
是三角形的内角,所以,故,…………10分
,所以.  ……… ……12分
考点:和差公式;三角函数最值的求法;正弦定理;同角三角函数关系式;三角形内的隐含条件。
点评:对于式子“”容易出错,本题已给出A为三角形的内角,所以这里可以约掉sinA.若没有告诉角A的范围,就不能约掉sinA了。其解决问题的方法应该是:由

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,用半径为R的圆铁皮,剪一个圆心角为的扇形,制成一个圆锥形的漏斗,问圆心角取什么值时,漏斗容积最大.(圆锥体积公式:,其中圆锥的底面半径为r,高为h)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数
的部分图象如图所示

(1)求的最小正周期及解析式;
(2)设,求函数在区间 R上的最大值和最小值及对应的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分分)
(1)化简
(2)求函数的最大值及相应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设
(Ⅰ)求的最大值及最小正周期;
(Ⅱ)若锐角满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)若向量其中,记函数,若函数的图像与直线为常数)相切,并且切点的横坐标依次成公差为的等差数列。
(1)求的表达式及的值;
(2)将函数的图像向左平移,得到的图像,当时,的交点横坐标成等比数列,求钝角的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数)在取到极值,
(I)写出函数的解析式;
(II)若,求的值;
(Ⅲ)从区间上的任取一个,若在点处的切线的斜率为,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数)的最小正周期为
(Ⅰ)当  时,求函数的最小值;
(Ⅱ)在,若,且,求的值。

查看答案和解析>>

同步练习册答案