精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
如图,用半径为R的圆铁皮,剪一个圆心角为的扇形,制成一个圆锥形的漏斗,问圆心角取什么值时,漏斗容积最大.(圆锥体积公式:,其中圆锥的底面半径为r,高为h)

解析试题分析:设圆锥的底面半径为r,高为h,体积为V,那么

因此,
=.………………………………(3分)
.
,即,得.…………………………………………(5分)
时,.
时,.
所以,时,V取得极大值,并且这个极大值是最大值.……………………(8分)
代入,得.
,得
答:圆心角弧度时,漏斗容积最大.………………………………………(12分)
考点:函数导数求最值
点评:本题是函数应用题,首先找到容积与高或底面圆的半径间的函数关系式,进而通过导数工具求其最值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,
.
(Ⅰ)求的表达式;
(Ⅱ)若函数和函数的图象关于原点对称,
(ⅰ)求函数的解析式;
(ⅱ)若函数在区间上是增函数,求实数l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)求函数的最小正周期和最小值;
并写出该函数在上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数的图象过点.
(Ⅰ)求的值;
(Ⅱ)在△中,角的对边分别是.若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知f (x)=sinx+cosx (xÎR).
(Ⅰ)求函数f (x)的周期和最大值; 
(Ⅱ)若f (A+)=,求cos2A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(Ⅰ)求的值;
(Ⅱ)若,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数
(1)求函数的最小正周期和单调递增区间;
(2)已知内角A,B,C的对边分别为,若向量共线,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)写出函数的最小正周期及单调递减区间;
(2)当时,函数的最大值与最小值的和为,求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)求的最大值;
(2)设△中,角的对边分别为,若
求角的大小.

查看答案和解析>>

同步练习册答案