精英家教网 > 高中数学 > 题目详情

(本小题满分12分)求函数的最小正周期和最小值;
并写出该函数在上的单调递增区间.

最小正周期是;最小值是-2, 单增区间是[],

解析试题分析:
---------------6分
故该函数的最小正周期是;最小值是-2;---------------------8分
单增区间是[],------------------------------------------12分
考点:本题主要考查三角函数恒等变换,三角函数图象和性质。
点评:典型题,此类题目是高考常考题型,首先利用三角函数和差倍半公式化简函数,然后讨论函数的单调性、求函数值等。“化一”是基本思路。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

函数在一个周期内的图像如图所示,A为图像的最高点,B.C为图像与轴的交点,且为正三角形.

(1)若,求函数的值域;          
(2)若,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在半径为、圆心角为的扇形金属材料中剪出一个长方形,并且的平分线平行,设

(1)试写出用表示长方形的面积的函数;
(2)在余下的边角料中在剪出两个圆(如图所示),试问当矩形的面积最大时,能否由这个矩形和两个圆组成一个有上下底面的圆柱?如果可能,求出此时圆柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的最大值和最小值
(2)若上是单调函数,且,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)已知函数
(1)用“五点法”作出这个函数在一个周期内的图象;

(2)函数图象经过怎样的变换可以得到 的图象?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数的图像上两相邻最高点的坐标分别为.
(Ⅰ)求的值;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,且的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,用半径为R的圆铁皮,剪一个圆心角为的扇形,制成一个圆锥形的漏斗,问圆心角取什么值时,漏斗容积最大.(圆锥体积公式:,其中圆锥的底面半径为r,高为h)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数
的部分图象如图所示

(1)求的最小正周期及解析式;
(2)设,求函数在区间 R上的最大值和最小值及对应的x的集合.

查看答案和解析>>

同步练习册答案