分析 将式子$(\overrightarrow a+\overrightarrow b)•(3\overrightarrow a-\overrightarrow b)=4$展开计算$\overrightarrow{a}•\overrightarrow{b}$,代入向量的夹角公式计算即可.
解答 解:∵$(\overrightarrow a+\overrightarrow b)•(3\overrightarrow a-\overrightarrow b)=4$,
∴3${\overrightarrow{a}}^{2}$-${\overrightarrow{b}}^{2}$+2$\overrightarrow{a}•\overrightarrow{b}$=4,
即12-4+2$\overrightarrow{a}•\overrightarrow{b}$=4,
∴$\overrightarrow{a}•\overrightarrow{b}$=-2.
∴cos<$\overrightarrow{a},\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{-2}{2×2}=-\frac{1}{2}$,
∴$\overrightarrow{a},\overrightarrow{b}$的夹角为$\frac{2π}{3}$.
故答案为:$\frac{2π}{3}$.
点评 本题考查了平面向量的数量积运算,夹角公式,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1-$\sqrt{3}$i | B. | $\sqrt{3}$-i | C. | $\sqrt{3}$+i | D. | 1+$\sqrt{3}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 男 | 女 | 合计 | |
| 爱好 | 40 | 20 | 60 |
| 不爱好 | 20 | 30 | 50 |
| 合计 | 60 | 50 | 110 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
| A. | 在犯错的概率不超过0.1%的前提下,认为“爱好该运动与性别无关” | |
| B. | 在犯错的概率不超过0.1%的前提下,认为“爱好该运动与性别有关” | |
| C. | 有99%以上的把握认为“爱好该运动与性别有关” | |
| D. | 有99%以上的把握认为“爱好该运动与性别无关” |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$a | B. | $\sqrt{2}$a | C. | $\frac{{\sqrt{3}}}{3}$a | D. | $\frac{{\sqrt{3}}}{2}$a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com