精英家教网 > 高中数学 > 题目详情
6.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(2$\sqrt{3}$,1),且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等边三角形.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设P(x,y)是椭圆E上的动点,M(2,0)为一定点,求|PM|的最小值及取得最小值时P点的坐标.

分析 (Ⅰ)由题意求得2b=a,将点(2$\sqrt{3}$,1),代入椭圆方程,即可求得a和b的值,求得椭圆方程;
(Ⅱ)利用两点之间的距离公式,求得丨PM丨2=(x-2)2+y2,由P在椭圆上,则y2=4-$\frac{{x}^{2}}{4}$,代入利用二次函数的性质,即可求得|PM|的最小值及P点坐标.

解答 解:(Ⅰ)由题意可知:2b=a,
将(2$\sqrt{3}$,1)代入椭圆方程:$\frac{{x}^{2}}{4{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,
解得:b2=4,a2=16,
∴椭圆E的方程$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$;
(Ⅱ)由丨PM丨2=(x-2)2+y2,由P(x,y)在椭圆上,(-4≤x≤4)则y2=4-$\frac{{x}^{2}}{4}$,
∴丨PM丨2=x2-4x+4+4-$\frac{{x}^{2}}{4}$=$\frac{3}{4}$x-4x+8=$\frac{3}{4}$(x+$\frac{8}{3}$)+$\frac{8}{3}$,
∴当x=-$\frac{8}{3}$时,丨PM丨取最小值,最小值为$\frac{2\sqrt{6}}{3}$,
∴当x=-$\frac{8}{3}$,解得:y=±$\frac{2\sqrt{5}}{3}$,
∴|PM|的最小值$\frac{2\sqrt{6}}{3}$,P点的坐标(-$\frac{8}{3}$,±$\frac{2\sqrt{5}}{3}$).

点评 本题考查椭圆的标准方程及简单几何性质,两点之间的距离公式,二次函数的最值,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若双曲线的右顶点与抛物线y2=12x的焦点相同,它们的离心率之和是3,该双曲线的标准方程是(  )
A.$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{27}=1$B.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{10}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow a,\overrightarrow b$满足${\overrightarrow a^2}=4$,$|\overrightarrow b|=2$,$(\overrightarrow a+\overrightarrow b)•(3\overrightarrow a-\overrightarrow b)=4$,则$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在正方体ABCD-A1B1C1D1中,AA1=3,点E在棱AB上,点F在棱C1D1上,且平面B1CF∥平面A1DE,若AE=1,则三棱锥B1-CC1F外接球的表面积为19π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{|{x}^{2}+2x-3|,x<2}\\{-{x}^{2}-2x+13,x≥2}\end{array}\right.$,若关于x的方程f(x)-m=0恰有五个不相等的实数解,则m的取值范围是(  )
A.[0,4]B.(0,4)C.(4,5)D.(0,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且Sn=ln(n+1)-a.
(1)求数列{an}的通项公式;
(2)设${b_n}={e^{a_n}}$(e为自然对数的底数),定义:$\sum_{k=1}^n{{b_k}={b_1}•{b_2}•{b_3}•…•{b_n}}$,求$\sum_{k=1}^n{b_k}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x,y∈R,i是虚数单位.若x+yi与$\frac{3+i}{1+i}$互为共轭复数,则x+y=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|22x+1≥4},B={x|y=log2(2-x)},则A∩B=(  )
A.$\left\{{x\left|{x≥\frac{1}{2}}\right.}\right\}$B.{x|x<2}C.$\left\{{x\left|{x≤\frac{1}{2}或x>2}\right.}\right\}$D.$\left\{{x\left|{\frac{1}{2}≤x<2}\right.}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知实数x,y满足$\left\{{\begin{array}{l}{x+y-4≤0}\\{2x-y+1≥0}\\{x-2y+2≥0}\end{array}}\right.$,则x+3y的最大值为10.

查看答案和解析>>

同步练习册答案