精英家教网 > 高中数学 > 题目详情
(本题15分)已知a是实数,函数.
(Ⅰ)若f1(1)=3,求a的值及曲线在点处的切线
方程;
(Ⅱ)求在区间[0,2]上的最大值。
(Ⅰ),(Ⅱ)
本题主要考查基本性质、导数的应用等基础知识,以及综合运用所学知识分析问题和解决问题的能力。满分15分。
(I)
因为
所以   
又当时,
所以曲线处的切线方程为  
(II)解:令,解得
,即a≤0时,在[0,2]上单调递增,从而

时,即a≥3时,在[0,2]上单调递减,从而

,即上单调递减,在上单调递增,从而   
综上所述,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


的图像经过点如图所示, (Ⅰ)求的解析式;
(Ⅱ)若对恒成立,
求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)=x3+ax2+5x+6在区间[1,3]上为单调函数,则实数a的取值范围为  (   )
A.[-,+∞]B.(-∞ ,-3)
C.(-∞ ,-3)∪[-,+∞]D.[-,]

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数,.
(I)证明:当时,函数在其定义域内为单调函数;(II)若函数的图象在点(1,)处的切线斜率为0,且当时,上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

理在直角坐标平面内,已知三点A、B、C共线,函数满足:(1)求函数的表达式;(2)若,求证:;(3)若不等式对任意及任意都成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题16分) 设函数,且,其中是自然对数的底数.(1)求的关系;(2)若在其定义域内为单调函数,求的取值范围;
(3)设,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知对任意正整数n,满足fn+1(x)=fn′(x),且f1(x)=sinx,则f2013(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=ax3+3x2+2,若f′(-1)=4,则a的值是(  )
A.
19
3
B.
13
3
C.
10
3
D.
16
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若以曲线(c为实常数)上任意一点为切点的切线的斜率恒为非负数,则实数b的取值范围为                        

查看答案和解析>>

同步练习册答案