分析 (1)满足a1=1,2Sn=anan+1.令n=1,可得:2S1=2a1=a1a2,解得a2=2,令n=2,3,同理可得:a3,a4,猜想an=n.
(2)bn=$\frac{{a}_{n}}{{2}^{{a}_{n}}}$=$\frac{n}{{2}^{n}}$,利用错位相减法与等比数列的求和公式即可得出.
解答 解:(1)满足a1=1,2Sn=anan+1.令n=1,可得:2S1=2a1=a1a2,解得a2=2,
令n=2,3,同理可得:a3=3,a4=4,猜想an=n.
(2)bn=$\frac{{a}_{n}}{{2}^{{a}_{n}}}$=$\frac{n}{{2}^{n}}$,
∴数列{bn}的前n项和Tn=$\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n}}$+$\frac{n}{{2}^{n+1}}$,
相减可得:$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$--$\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$,
可得:Tn=2-$\frac{2+n}{{2}^{n}}$.
点评 本题考查了数列递推关系、等比数列的通项公式与求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ①②③④ | B. | ①④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a=$\frac{1}{2}$,b=1 | B. | a=$\frac{1}{2}$,b=-1 | C. | a=-$\frac{1}{2}$,b=1 | D. | a=-$\frac{1}{2}$,b=-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在直线y=-3x上 | B. | 在直线y=3x上 | C. | 在直线y=-4x上 | D. | 在直线y=4x上 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1和2 | B. | 2和3 | C. | 3和4 | D. | 2和4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com