精英家教网 > 高中数学 > 题目详情
12.某河道中过度滋长一种藻类,环保部门决定投入生物净化剂净化水体.因技术原因,第t分钟内投放净化剂的路径长度p=140-|t-40|(单位:m),净化剂净化水体的宽度q(单位:m)是时间t(单位:分钟)的函数:q(t)=1+a2t(a由单位时间投放的净化剂数量确定,设a为常数,且a∈N*).
(1)试写出投放净化剂的第t分钟内净化水体面积S(t)(1≤t≤60,t∈N*)的表达式;
(2)求S(t)的最小值.

分析 (1)利用已知条件列出分段函数的解析式.
(2)利用分段函数以及函数的单调性,结合基本不等式求解函数的最值.

解答 (本小题满分14分)
解:(1)由题意,S(t)=p(t) q(t)=(140-|t-40|)(1+$\frac{{a}^{2}}{t}$)=$\left\{\begin{array}{l}{100+{a}^{2}+t+\frac{100{a}^{2}}{t},1≤t<40,t∈{N}^{•}}\\{180-{a}^{2}-t+\frac{180{a}^{2}}{t},40≤t≤60,t∈{N}^{•}}\end{array}\right.$
(2)当40≤t≤60且t∈N*时,S(t)=180-a2-t+$\frac{180{a}^{2}}{t}$,当t增加时$\frac{180{a}^{2}}{t}$减少,
所以S(t)在40≤t≤60时单调递减;当t=60时,S(t)有最小值2a2+120.
当1≤t<40且t∈N*时,S(t)=100+a2+t+$\frac{180{a}^{2}}{t}$≥100+a2+20a;
①若a=1或2或3时;当t=10a时,上述不等式中的等号成立,
S(t)在1≤t<40范围中有最小值a2+2a+100.
又在40≤t≤60时S(t)有最小值2a2+120.
当a=1时,100+a2+20a=121<122=2a2+120,故S(t)有最小值121;
当a=2或a=3时,100+a2+20a>2a2+120,故S(t)有最小值2a2+120.
②若a≥4且1≤t<40时,因为1+$\frac{100{a}^{2}}{t+1}$-$\frac{100{a}^{2}}{t}$=1-$\frac{100{a}^{2}}{t(t-1)}$≤0,
所以S(t+1)=100+a2+t+1+$\frac{100{a}^{2}}{t+1}$≤S(t)=100+a2+t+$\frac{100{a}^{2}}{t}$,
故S(t)在1≤t≤40中单调递减;又S(t)在40≤t≤60时单调递减,
所以S(t)在1≤t≤60时单调递减.
所以,当t=60时,S(t)有最小值2a2+120.
综上,若a=1,当t=10时,S(t)有最小值121;即第10天的销售额最少,为121千元.
若a≥4且a∈N*,当t=60时,S(t)有最小值2a2+120.

点评 本题考查函数的最值的求法,函数的解析式的应用,考查实际问题的解法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知全集U=R,集合$A=\left\{{y\left|{y={{(\frac{1}{2})}^x}+1}\right.}\right\}$,集合B={y|y=b,b∈R},若A∩B=∅,则b的取值范围是(  )
A.b<0B.b≤0C.b<1D.b≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知梯形ABCD中,∠ABC=∠BAD=$\frac{π}{2}$,AB=BC=1,AD=2,P是DC的中点,则|$\overrightarrow{PA}$+2$\overrightarrow{PB}$|=(  )
A.$\frac{\sqrt{82}}{2}$B.2$\sqrt{5}$C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.当实数x,y满足不等式组$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$时,目标函数z=ax+y的最大值为3,则实数a的值为(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设全集U={x|1≤x≤5},若集合M={1},则∁UM=(1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.命题“?x>2,都有x2>2”的否定是?x0>2,x02≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某冰淇淋店要派车到100千米外的冷饮加工厂原料,再加工成冰淇淋后售出,已知汽车每小时的运行成本F(单位:元)与其自重m(包括车子、驾驶员及所载货物等的质量,单位:千克)和车速v(单位:千米/小时)之间满足关系式:$F=\frac{1}{1600}m{v^2}$.在运输途中,每千克冷饮每小时的冷藏费为10元,每千克冷饮经过冰淇淋店再加工后,可获利100元.若汽车重量(包括驾驶员等,不含货物)为1.3吨,最大载重为1吨.汽车来回的速度为v(单位:千米/小时),且最大车速为80千米,一次进货x千克,而且冰淇淋供不应求.
(1)求冰淇淋店进一次货,经加工售卖后所得净利润w与车速v和进货量x之间的关系式;
(2)每次至少进货多少千克,才能使得销售后不会亏本(净利润w≥0)?
(3)当一次进货量x与车速v分别为多少时,能使得冰淇淋店有最大净利润?并求出最大值.(提示:${({\sqrt{x+b}})^′}=\frac{1}{{2\sqrt{x+b}}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上随机取一个数x,cos2$\frac{x}{2}$-sin2$\frac{x}{2}$的值介于0和$\frac{1}{2}$之间的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,三棱柱ABC-A1B1C1中,AB=AC=CC1,平面BAC1⊥平面ACC1A1,∠ACC1=∠BAC1=60°,AC1∩A1C=O.
(Ⅰ)求证:BO⊥平面AA1C1C;
(Ⅱ)求二面角A-BC1-B1的余弦值.

查看答案和解析>>

同步练习册答案