| A. | -1 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
分析 延长AB到点N,延长AC到点M,使得|AN|=a|AB|,|AM|=b|AC|,作CH∥AN,BF∥AM,NG∥AM,MG∥AN,则四边形ABEC,ANGM,EHGF均为平行四边形.由题意可知:点P(x,y)组成的区域D为图中的四边形EFGH及其内部.利用向量的夹角公式可得cos∠CAB=$\frac{\overrightarrow{AC}•\overrightarrow{AB}}{|\overrightarrow{AC}|•|\overrightarrow{AB}|}$,利用四边形EFGH的面积S=(a-1)$\sqrt{10}$×(b-1)×$\sqrt{10}$×$\frac{4}{5}$=4,求出ab-a-b的值即可.
解答 解:如图所示:
,
延长AB到点N,延长AC到点M,使得|AN|=a|AB|,|AM|=b|AC|,作CH∥AN,BF∥AM,NG∥AM,MG∥AN,则四边形ABEC,ANGM,EHGF均为平行四边形.由题意可知:点P(x,y)组成的区域D为图中的四边形EFGH及其内部.
∵$\overrightarrow{AB}$=(3,1),$\overrightarrow{AC}$=(1,3),$\overrightarrow{BC}$=(-2,2),
∴|$\overrightarrow{AB}$|=$\sqrt{10}$,|$\overrightarrow{AC}$|=$\sqrt{10}$,|$\overrightarrow{BC}$|=2$\sqrt{2}$,
∴cos∠CAB=$\frac{\overrightarrow{AC}•\overrightarrow{AB}}{|\overrightarrow{AC}|•|\overrightarrow{AB}|}$=$\frac{6}{\sqrt{10}•\sqrt{10}}$=$\frac{3}{5}$,sin∠CAB=$\frac{4}{5}$,
∴四边形EFGH的面积S=(a-1)$\sqrt{10}$×(b-1)×$\sqrt{10}$×$\frac{4}{5}$=4,
∴(a-1)(b-1)=$\frac{1}{2}$,即ab-a-b=-$\frac{1}{2}$,
故选:B.
点评 本题考查了向量的夹角公式、数量积运算性质、平行四边形的面积计算公式、基本不等式 的性质,考查了数形结合的思想方法,考查了推理能力与计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\sqrt{3}$-1)R | B. | $\frac{2-\sqrt{3}}{2}$R | C. | (2-$\sqrt{3}$)R | D. | $\frac{\sqrt{3}-1}{2}$R |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com