精英家教网 > 高中数学 > 题目详情

如图,四边形ABCD内接于圆,BD是圆的直径,于点E,DA平分.
(1)证明:AE是圆的切线;
(2)如果,求CD.

(1)证明过程详见解析;(2).

解析试题分析:本题主要考查三角形相似、内错角相等、弦切角相等、切割线定理等基础知识,考查学生的逻辑推理能力、转化能力.第一问,连结OA,利用OA,OD都是半径,得∠OAD=∠ODA,利用传递性∠ODA=∠ADE,得∠ADE=∠OAD,利用内错角相等,得OA∥CE,所以,所以AE为圆O的切线;第二问,利用第一问的分析得△ADE∽△BDA,所以,即BD=2AD,所以在中,得,利用弦切角相等得,在中,求出DE的长,再利用切割线定理得CD的长.
(1)连结OA,则OA=OD,所以∠OAD=∠ODA,
又∠ODA=∠ADE,所以∠ADE=∠OAD,所以OA∥CE.
因为AE⊥CE,所以OA⊥AE.
所以AE是⊙O的切线.          5分

(2)由(1)可得△ADE∽△BDA,
所以,即,则BD=2AD,
所以∠ABD=30°,从而∠DAE=30°,
所以DE=AEtan30°=
由切割线定理,得AE2=ED·EC,
所以,所以.      10分
考点:三角形相似、内错角相等、弦切角相等、切割线定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD是边长为a的正方形,以D为圆心,DA为半径的圆弧与以BC为直径的半圆O交于点C、F,连接CF并延长交AB于点E.
 
(Ⅰ)求证:E是AB的中点。
(Ⅱ)求线段BF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知,在边长为1的正方形ABCD的一边上取一点E,使AE=AD,从AB的中点F作HF⊥EC于H.

(1)求证:FH=FA;
(2)求EH∶HC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知PQ与圆O相切于点A,直线PBC交圆于B、C两点,D是圆上一点,且AB∥CD,DC的延长线交PQ于点Q.
(1)求证:
(2)若AQ=2AP,AB=,BP=2,求QD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆的两弦交于点的延长线于点.求证:△∽△

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆的圆心的直角边上,该圆与直角边相切,与斜边交于.

(1)求的长;
(2)求圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

(几何证明选讲选做题)如图,在⊙中,为直径,为 弦,过点的切线与的延长线交于点,且,则 =_________

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点A,B,C是圆O上的点,且AB=4,∠ACB=45°,求圆O的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,求DE的长.

查看答案和解析>>

同步练习册答案