分析 (1)由椭圆离心率为$\frac{{\sqrt{2}}}{2}$,且过点$({2,\sqrt{2}})$,列出方程组求出a,b,由此能求出椭圆的标准方程.
(2)设直线AC、BD的方程分别为$y=kx,y=-\frac{1}{2k}x$.联立$\left\{\begin{array}{l}y=kx\\ \frac{x^2}{8}+\frac{y^2}{4}=1\end{array}\right.,\left\{\begin{array}{l}y=-\frac{1}{2k}x\\ \frac{x^2}{8}+\frac{y^2}{4}=1\end{array}\right.$,由椭圆的对称性可知S四边形ABCD=4×S△AOB=2|OA||OB|sin∠AOB.由此能证明四边形ABCD的面积为定值.
解答 解:(1)∵椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,且过点$({2,\sqrt{2}})$,
∴由题意可得$\left\{\begin{array}{l}\frac{c}{a}=\frac{{\sqrt{2}}}{2}\\ \frac{4}{a^2}+\frac{2}{b^2}=1\\{a^2}={b^2}+{c^2}\end{array}\right.$,解得$\left\{\begin{array}{l}{a^2}=8\\{b^2}={c^2}=4\end{array}\right.$,
∴椭圆的标准方程为$\frac{x^2}{8}+\frac{y^2}{4}=1$.
证明:(2)设A(x1,y1),B(x2,y2),不妨设x1>0,x2>0.
设kAC=k,∵${k_{AC}}•{k_{BD}}=-\frac{b^2}{a^2}=-\frac{1}{2}$,∴${k_{BD}}=-\frac{1}{2k}$
可得直线AC、BD的方程分别为$y=kx,y=-\frac{1}{2k}x$.
联立$\left\{\begin{array}{l}y=kx\\ \frac{x^2}{8}+\frac{y^2}{4}=1\end{array}\right.,\left\{\begin{array}{l}y=-\frac{1}{2k}x\\ \frac{x^2}{8}+\frac{y^2}{4}=1\end{array}\right.$.
解得${x_1}=\frac{{2\sqrt{2}}}{{\sqrt{1+2{k^2}}}},{x_2}=\frac{4|k|}{{\sqrt{1+2{k^2}}}}$.
∴$\overrightarrow{OA}•\overrightarrow{OB}={x_1}{x_2}+{y_1}{y_2}=\frac{1}{2}{x_1}{x_2}=\frac{{4\sqrt{2}|k|}}{{1+2{k^2}}}≤\frac{{4\sqrt{2}|k|}}{{2\sqrt{2}|k|}}=2$,
当且仅当$|k|=\frac{{\sqrt{2}}}{2}$时取等号.
由椭圆的对称性可知S四边形ABCD=4×S△AOB=2|OA||OB|sin∠AOB.
∴$S_{四边形ABCD}^2=4[{{{|{OA}|}^2}{{|{OB}|}^2}-{{({\overrightarrow{OA}•\overrightarrow{OB}})}^2}}]$
=$4[{({x_1^2+y_1^2})({x_2^2+y_2^2})-{{({{x_1}{x_2}+{y_1}{y_2}})}^2}}]$
=$4{({{x_1}{y_2}-{x_2}{y_1}})^2}$=$4{({-\frac{1}{2k}{x_1}{x_2}-k{x_1}{x_2}})^2}$=$4{({k+\frac{1}{2k}})^2}{({\frac{{8\sqrt{2}k}}{{1+2{k^2}}}})^2}$=128,
∴四边形ABCD的面积=$8\sqrt{2}$为定值.
点评 本题考查椭圆方程的求法,考查四边形的面积为定值的证明,是中档题,解题时要认真审题,注意韦达定理、椭圆性质、弦长公式的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $-\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,+∞) | B. | [-2,+∞) | C. | (-2,+∞) | D. | [-1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com