精英家教网 > 高中数学 > 题目详情
20.正三棱锥P-ABC内接于球O,球心O在底面ABC上,且$AB=\sqrt{3}$,则球的表面积为4π.

分析 由正三棱锥P-ABC内接于球O,球心O在底面ABC上,且AB=$\sqrt{3}$,求出球的半径,即可求出球的表面积.

解答 解:∵正三棱锥P-ABC内接于球O,球心O在底面ABC上,且AB=$\sqrt{3}$,
∴球的半径为$\frac{\sqrt{3}}{3}×\sqrt{3}$=1,
∴球的表面积为4πR2=4π.
故答案为:4π.

点评 本题考查球的表面积,考查学生的计算能力,求出球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图,设计一个程序为秘钥,当接收方收到密文为14,9,23,28时,解密得到的明文为(  )
A.4,6,1,7B.7,6,1,4C.1,6,4,7D.6,4,1,7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将椭圆$\frac{x^2}{4}+{y^2}=1$上的点的横坐标保持不变,纵坐标变为原来的2倍,所得曲线的方程为x2+y2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线C:x2=2py(p>0),倾斜角为$\frac{π}{4}$且过点M(0,1)的直线l与C相交于A,B两点,且$\overrightarrow{AM}=2\overrightarrow{MB}$
(1)求抛物线C的方程;
(2)抛物线C与直线l′相切,求点M到直线l′的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.口袋中有三个大小相同、颜色不同的小球各一个,每次从中取一个,记下颜色后放回,当三种颜色的球全部取出时停止取球,则恰好取了5次停止种数为42.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,且过点$({2,\sqrt{2}})$,四边形ABCD的顶点在椭圆E上,且对角线AC,BD过原点O,${k_{AC}}•{k_{BD}}=-\frac{b^2}{a^2}$.
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范围;
(2)求证:四边形ABCD的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.化简求值:
(1)0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$
(2)$\frac{1}{2}$lg25+lg2+($\frac{1}{3}$)${\;}^{lo{g}_{3}2}$-log29×log32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.记者要为4名志愿者和他们帮助的2位老人照相,要求排成一排,2位老人不相邻,不同的排法共有(  )种.
A.240B.360C.480D.720

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数z=$\frac{{{{(1+i)}^3}}}{2}$,则|z|=(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案