精英家教网 > 高中数学 > 题目详情
11.已知f(x)=|x+2|+|x-4|
(1)解不等式f(x)>8;
(2)若不等式f(x)-a2+a<0的解集不为空集,求a的取值范围.

分析 (1)由条件利用绝对值的意义求得不等式f(x)>8的解集.
(2)由题意可得,f(x)min<a2-a.由绝对值的意义可得 f(x)min=6,根据 6<a2-a,求得a的范围.

解答 解:(1)f(x)=|x+2|+|x-4|表示数轴上的x对应点到-2、4对应点的距离之和,
而-3和5对应点到-2、4对应点的距离之和正好等于8,
故不等式f(x)>8的解集为{x|x<-3,或 x>5}.
(2)若不等式f(x)-a2+a<0的解集不为空集,则f(x)min<a2-a.
由绝对值的意义可得 f(x)min=6,∴6<a2-a,求得a<-2,或 a>3.

点评 本题主要考查绝对值的意义,绝对值不等式的解法,函数的能成立问题,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知△ABC中,∠B=2∠A,a:b=5:8.
(1)求cosA;
(2)求cosC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=ax2+$\frac{a+4}{x}$(a∈R)为奇函数,函数g(x)=f(logx2).
(1)求函数f(x)的解析式;
(2)若关于x的方程g(x)=m+(log2x)2在区间[2,8]上有解,求实数m的最大值.
(3)求证:当x∈[2,4]时,(ex+1)[g(x)-f(x2)]>ex+11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=ax(a>0,a≠1)在区间[-2,2]上的函数值总小于2,则log2a的取值范围是(  )
A.(-$\frac{1}{2}$,0)∪($\frac{1}{2}$,1)B.(0,$\frac{1}{2}$)∪($\frac{\sqrt{2}}{2}$,1)C.(-$\frac{1}{2}$,0)∪(0,$\frac{1}{2}$)D.(-∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆锥的母线长为l,高为$\frac{1}{2}$l,则过圆锥顶点的最大截面的面积为(  )
A.$\frac{\sqrt{3}}{4}$l2B.$\frac{1}{2}$l2C.$\frac{\sqrt{3}}{2}$l2D.$\frac{1}{4}$l2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示的一块木料ABCD-A1B1C1D1中,棱AA1,BB1.BB1,DD1互相平行,AA1⊥平面ABCD,四边形ABCD是矩形,AA1=DD1=4,AB=6,BB1=CC1=2,BC=4
(1)要经过面A1C1的中心M和棱BC讲木料锯开,应怎样画线?在图中作出点M,并画出截线(不必说明画法和理由)
(2)记木料被锯开后的截面为α,求AM与平面α所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=$\frac{{x}^{2}-x}{2x+1}$的值域是(-∞,-1-$\frac{\sqrt{3}}{2}$]∪[-1+$\frac{\sqrt{3}}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点F1与椭圆上点P的最短距离为a-c,最长距离为a+c,若F2是其另一焦点,则|PF1|•|PF2|的取值范围是[b2,a2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合M={y|y=x2+2x+4,x∈R},N={y|y=ax2-2x+4a,x∈R},若M∩N=M,求a的取值范围.

查看答案和解析>>

同步练习册答案