精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F(1,0),短轴的一个端点B到F的距离等于焦距.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F的直线l与椭圆C交于不同的两点M,N,是否存在直线l,使得△BFM与△BFN的面积比值为2?若存在,求出直线l的方程;若不存在,说明理由.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)根据椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F(1,0),短轴的一个端点B到F的距离等于焦距,求出几何量,即可求椭圆C的方程;
(Ⅱ)△BFM与△BFN的面积比值为2等价于FM与FN比值为2,分类讨论,设直线l的方程为y=k(x-1),代入椭圆方程,消x并整理,利用韦达定理,根据FM与FN比值为2,即可求得直线方程.
解答: 解:(Ⅰ)由已知得c=1,a=2c=2------------------(3分)
b=
a2-c2
=
3

∴椭圆C的方程为
x2
4
+
y2
3
=1
------------------(4分)
(Ⅱ)△BFM与△BFN的面积比值为2等价于FM与FN比值为2------------------(2分)
当直线l斜率不存在时,FM与FN比值为1,不符合题意,舍去;------------------(3分)
当直线l斜率存在时,设直线l的方程为y=k(x-1),
直线l的方程代入椭圆方程,消x并整理得(3+4k2)y2+6ky-9k2=0------------------(5分)
设M(x1,y1),N(x2,y2),则y1+y2=-
6k
3+4k2
 ①,y1y2=-
9k2
3+4k2
②------------------(7分)
由FM与FN比值为2得y1=-y2
由①②③解得k=±
5
2

因此存在直线l:y=±
5
2
(x-1)使得△BFM与△BFN的面积比值为2------------------(9分)
点评:本题考查椭圆方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生的计算能力,△BFM与△BFN的面积比值为2等价于FM与FN比值为2是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x|x-a|的图象与函数g(x)=|x-1|的图象有三个不同的交点,则a的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
1
3
,则cos2
α
2
+
π
4
)=(  )
A、
1
6
B、
2
3
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1)、B(x2,y2)、C(x3,y3)是抛物线x2=2py(p>0﹚上的三点,F是其焦点,且x12、x22、x32成等差数列.求证:|AF|、|BF|、|CF|也成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+y2=1(a>1)的离心率为
3
2
,过点Q(1,0)任作一条弦交椭圆于C、D两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为直线x=4上任意一点,kPC,kPQ,kPD分别为直线PC,PQ,PD的斜率.是否存在实数λ,使kPC+kPD=λkPQ恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α∈(
π
2
,π),tanα-cotα=
3
2

(1)求tanα,sinα的值;
(2)求tan
α
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某品牌电视机代理销售商根据近年销售和利润情况得出某种型号电视机的利润情况有如下规律:每台电视机的最终销售利润与其无故障使用时间T(单位:年)有关.若T≤1,则每台销售利润为0元;若1<T≤3,则每台销售利润为100元;若T>3,则每台销售利润为200元.设每台该种电视机的无故障使用时间T≤1,1<T≤3,T>3这三种情况发生的概率分别为P1,P2,P3,又知P1,P2是方程10x2-6x+a=0的两个根,且P2=P3
(Ⅰ)求P1,P2,P3的值;
(Ⅱ)记ξ表示销售两台这种电视机的销售利润总和,写出ξ的所有结果,并求ξ的分布列;
(Ⅲ)求销售两台这种型号电视机的销售利润总和的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个袋中装有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率为
2
5
;从袋中任意摸出2个球,至少得到1个白球的概率为
7
9

(Ⅰ)若袋中共有10个球;
(1)求白球的个数;
(2)从袋中任意摸出3个球,记得到白球的个数为ξ,求ξ的数学期望E(ξ).
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于
7
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c为△ABC的三边,化简:
(a-b-c)2
+
(-a-b)2
+
(b-a-c)2 

查看答案和解析>>

同步练习册答案