精英家教网 > 高中数学 > 题目详情
已知sinα=
1
3
,则cos2
α
2
+
π
4
)=(  )
A、
1
6
B、
2
3
C、
1
3
D、
1
2
考点:二倍角的余弦,同角三角函数基本关系的运用
专题:计算题,三角函数的求值
分析:利用cos2
α
2
+
π
4
)=
1+cos(α+
π
2
)
2
=
1-sinα
2
,代入计算可得结论.
解答: 解:∵sinα=
1
3

∴cos2
α
2
+
π
4
)=
1+cos(α+
π
2
)
2
=
1-sinα
2
=
1
3

故选:C.
点评:本题考查二倍角的余弦,考查学生的计算能力,正确运用二倍角的余弦公式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P(a+1,b+1),Q(1,0),线段PQ与直线2x-3y+1=0有交点,若存在M∈R+,使得-b-a2≤M恒成立,则M的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

当n很大时,函数f(x)在区间[
i-1
n
i
n
]上的值可以用
 
以直代曲.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)可导,且y=f(e2x),则y′=(  )
A、f′(e2x
B、f′(e2x)e2x
C、2f′(e2x
D、2f′(e2x)e2x

查看答案和解析>>

科目:高中数学 来源: 题型:

设y=ln(2x+3),则y′=(  )
A、
1
2(2x+3)
B、
2
x+3
C、
1
2x+3
D、
2
2x+3

查看答案和解析>>

科目:高中数学 来源: 题型:

设A是圆形纸片内不同于圆心的一个点,取圆周上一点B,折叠纸片使点B与A重合,得到一条折痕,当点B取遍圆周上所有点时,得到的所有折痕均与某条曲线相切,这条曲线是一个(  )
A、圆B、椭圆C、双曲线D、抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD的底面为棱形,且∠DAB=60°,PA⊥底面ABCD,AB=2a,PA=2
3
a,E为PC的中点.
(1)求直线DE与平面PAC所成角的大小;
(2)求二面角E-AD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F(1,0),短轴的一个端点B到F的距离等于焦距.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F的直线l与椭圆C交于不同的两点M,N,是否存在直线l,使得△BFM与△BFN的面积比值为2?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)对于任意正实数x,y有f(xy)=f(x)f(y),且x>1时,f(x)<1,f(2)=
1
9

(1)求证:f(x)>0;
(2)求证:y=f(x)在(0,+∞)为单调减函数.

查看答案和解析>>

同步练习册答案