18£®Èçͼ£¬ÒÑÖªÖ±½ÇÌÝÐÎABCDËùÔ򵀮½Ãæ´¹Ö±ÓÚÆ½ÃæABE£¬¡ÏEAB=¡ÏABC=90¡ã£¬¡ÏDAB=60¡ã£¬AB=AD=AE£¬PΪÏß¶ÎBEµÄÖе㣮

£¨¢ñ£©ÇóÖ¤£ºCP¡ÎÆ½ÃæDAE£»
£¨¢ò£©ÇóÆ½ÃæCDEÓëÆ½ÃæABEËù³ÉµÄÈñ¶þÃæ½Ç¦ÈµÄÓàÏÒÖµ£»
£¨¢ó£©ÔÚÏß¶ÎECÉÏÊÇ·ñ´æÔÚÒ»µãQ£¬Ê¹Ö±ÏßPQÓëÆ½ÃæCDEËù³ÉµÄ½ÇµÄÕýÏÒֵΪ$\frac{3\sqrt{6}}{14}$£®Èô´æÔÚ£¬Çó³ö$\frac{EQ}{EC}$µÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©È¡AEµÄÖеãF£¬Á¬½ÓDF¡¢PF£¬ÓÉÒÑÖªÖ¤µÃPF¡ÎDC£¬ÇÒPF=DC£¬ÔòËıßÐÎDCPFΪƽÐÐËıßÐΣ¬¿ÉµÃPC¡ÎDF£®ÔÙÓÉÏßÃæÆ½ÐеÄÅж¨¿ÉµÃCP¡ÎÆ½ÃæDAE£»
£¨II£©ÓÉ¡ÏBAE=90¡ã£¬Æ½ÃæABCDÆ½ÃæABE£¬ÔÚÆ½ÃæABCDÄÚ¹ýA×÷Az¡ÍAB£®ÒÔµãAΪԭµã£¬Ö±ÏßAEΪxÖᣬֱÏßABΪyÖᣬAzΪzÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵA-xyz£¬
ÉèAB=AD=AE=2£¬ÇóµÃE£¬C£¬DµÄ×ø±ê£¬½øÒ»²½Çó³öÆ½ÃæECDÓëÆ½ÃæÆ½ÃæABCµÄÒ»¸ö·¨ÏòÁ¿£¬ÓÉÁ½·¨ÏòÁ¿Ëù³É½ÇµÄÓàÏÒÖµ¿ÉµÃÆ½ÃæCDEÓëÆ½ÃæABEËù³ÉµÄÈñ¶þÃæ½Ç¦ÈµÄÓàÏÒÖµ£»
£¨¢ó£©ÉèQ£¨x£¬y£¬z£©£¬ÇÒ$\overrightarrow{EQ}=¦Ë\overrightarrow{EC}$£¬ÓÉÏòÁ¿ÏàµÈÇóµÃQ£¨2-2¦Ë£¬2¦Ë£¬$\sqrt{3}¦Ë$£©£¬ÓÖP£¨1£¬1£¬0£©£¬¿ÉµÃ$\overrightarrow{PQ}=£¨1-2¦Ë£¬2¦Ë-1£¬\sqrt{3}¦Ë£©$£®½áºÏÖ±ÏßPQÓëÆ½ÃæCDEËù³ÉµÄ½ÇµÄÕýÏÒֵΪ$\frac{3\sqrt{6}}{14}$ÁÐʽÇóµÃ$¦Ë=\frac{2}{9}$»ò$¦Ë=\frac{2}{33}$£®

½â´ð £¨¢ñ£©Ö¤Ã÷£ºÈ¡AEµÄÖеãF£¬Á¬½ÓDF¡¢PF£¬
¡ßPΪBEÖе㣬¡àPF¡ÎAB£¬ÇÒPF=$\frac{1}{2}AB$£¬
ÓÖÖ±½ÇÌÝÐÎABCDÖУ¬¡ÏDAB=60¡ã£¬AB=AD£¬
¿ÉµÃDC¡ÎAB£¬ÇÒDC=$\frac{1}{2}AB$£¬
¡àPF¡ÎDC£¬ÇÒPF=DC£¬ÔòËıßÐÎDCPFΪƽÐÐËıßÐΣ¬¿ÉµÃPC¡ÎDF£®
¶øDF?Æ½ÃæEAD£¬PC?Æ½ÃæEAD£¬¡àCP¡ÎÆ½ÃæDAE£»
£¨II£©½â£º¡ß¡ÏBAE=90¡ã£¬Æ½ÃæABCDÆ½ÃæABE£¬ÔÚÆ½ÃæABCDÄÚ¹ýA×÷Az¡ÍAB£®
¡àÒÔµãAΪԭµã£¬Ö±ÏßAEΪxÖᣬֱÏßABΪyÖᣬAzΪzÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵA-xyz£¬
ÉèAB=AD=AE=2£¬ÓÉÒÑÖª£¬µÃE£¨2£¬0£¬0£©£¬C£¨0£¬2£¬$\sqrt{3}$£©£¬D£¨0£¬1£¬$\sqrt{3}$£©£®
¡à$\overrightarrow{EC}=£¨-2£¬2£¬\sqrt{3}£©$£¬$\overrightarrow{DC}=£¨0£¬1£¬0£©$£¬
ÉèÆ½ÃæECDµÄ·¨ÏòÁ¿Îª$\overrightarrow{n}$=£¨x£¬y£¬z£©£¬
Ôò$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EC}=-2x+2y+\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{DC}=y=0}\end{array}\right.$£¬È¡z=2£¬µÃÆ½ÃæECDµÄÒ»¸ö·¨ÏòÁ¿Îª$\overrightarrow{n}$=£¨$\sqrt{3}$£¬0£¬2£©£®
Ó֡߯½ÃæABCµÄÒ»¸ö·¨ÏòÁ¿Îª$\overrightarrow{m}$=£¨0£¬0£¬1£©£®
¡àcos¦È=|cos£¼$\overrightarrow{m}£¬\overrightarrow{n}$£¾|=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}=\frac{2}{\sqrt{7}}=\frac{2\sqrt{7}}{7}$£¬
¼´Æ½ÃæCDEÓëÆ½ÃæABEËù³ÉµÄÈñ¶þÃæ½Ç¦ÈµÄÓàÏÒֵΪ$\frac{2\sqrt{7}}{7}$£»
£¨¢ó£©½â£ºÏß¶ÎECÉÏ´æÔÚµãQ£¬Ê¹Ö±ÏßPQÓëÆ½ÃæCDEËù³ÉµÄ½ÇµÄÕýÏÒֵΪ$\frac{3\sqrt{6}}{14}$£¬´Ëʱ$\frac{EQ}{EC}$=$\frac{2}{9}$»ò$\frac{EQ}{EC}$=$\frac{2}{33}$£®
ÉèQ£¨x£¬y£¬z£©£¬ÇÒ$\overrightarrow{EQ}=¦Ë\overrightarrow{EC}$£¬Ôò£¨x-2£¬y£¬z£©=£¨-2$¦Ë£¬2¦Ë£¬\sqrt{3¦Ë}$£©£¬
¡à$\left\{\begin{array}{l}{x-2=-2¦Ë}\\{y=2¦Ë}\\{z=\sqrt{3}¦Ë}\end{array}\right.$£¬¼´Q£¨2-2¦Ë£¬2¦Ë£¬$\sqrt{3}¦Ë$£©£¬P£¨1£¬1£¬0£©£¬
Ôò$\overrightarrow{PQ}=£¨1-2¦Ë£¬2¦Ë-1£¬\sqrt{3}¦Ë£©$£®
¡ßÖ±ÏßPQÓëÆ½ÃæCDEËù³ÉµÄ½ÇµÄÕýÏÒֵΪ$\frac{3\sqrt{6}}{14}$£¬
¡à|cos£¼$\overrightarrow{PQ}£¬\overrightarrow{n}$£¾|=|$\frac{\overrightarrow{PQ}•\overrightarrow{n}}{|\overrightarrow{PQ}||\overrightarrow{n}|}$|=$\frac{|\sqrt{3}£¨1-2¦Ë£©+2\sqrt{3}¦Ë|}{\sqrt{2£¨1-2¦Ë£©^{2}+3{¦Ë}^{2}}•\sqrt{7}}=\frac{3\sqrt{6}}{14}$£®
½âµÃ£º$¦Ë=\frac{2}{9}$»ò$¦Ë=\frac{2}{33}$£®
¡à$\frac{EQ}{EC}$=$\frac{2}{9}$»ò$\frac{EQ}{EC}$=$\frac{2}{33}$£®

µãÆÀ ±¾Ì⿼²éÏßÃæÆ½ÐеÄÅж¨£¬¿¼²é¿Õ¼äÏëÏóÄÜÁ¦ºÍ˼άÄÜÁ¦£¬ÑµÁ·ÁËÀûÓÿռäÏòÁ¿ÇóÏßÃæ½ÇÓë̾̾½Ç£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Ä³Í¬Ñ§¸ù¾Ý¡°¸üÏà¼õËðÊõ¡±Éè¼Æ³ö³ÌÐò¿òͼ£¨Í¼£©£®ÈôÊäÈëaµÄֵΪ98£¬bµÄֵΪ63£¬ÔòÖ´ÐиóÌÐò¿òͼÊä³öµÄ½á¹ûΪ£¨¡¡¡¡£©
A£®0B£®7C£®14D£®21

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÔÚijСѧÌåÓýËØÖÊ´ï±êÔ˶¯»áÉÏ£¬¶Ô10ÃûÄÐÉúºÍ10ÃûÅ®ÉúÔÚÒ»·ÖÖÓÌøÉþµÄ´ÎÊý½øÐÐͳ¼Æ£¬µÃµ½ÈçÏÂËùʾ¾¥Ò¶Í¼£º
£¨1£©ÒÑÖªÄÐÉú×éÖÐÊý¾ÝµÄÖÐλÊýΪ125£¬Å®Éú×éÊý¾ÝµÄƽ¾ùÊýΪ124£¬Çóx£¬yµÄÖµ£»
£¨2£©´ÓÒ»·ÖÖÓÄÚÌøÉþ´ÎÊý²»µÍÓÚ110´ÎÇÒ²»¸ßÓÚ120´ÎµÄѧÉúÖÐÈÎÈ¡Á½Ãû£¬ÇóÁ½ÃûѧÉúÖÐÖÁÉÙÓÐÒ»ÃûÄÐÉúµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Ä³¹¤³§ÎªÁ˽âÓõçÁ¿yÓëÆøÎÂx¡æÖ®¼äµÄ¹ØÏµ£¬Ëæ»úͳ¼ÆÁË5ÌìµÄÓõçÁ¿Óëµ±ÌìÆøÎ£¬µÃµ½ÈçÏÂͳ¼Æ±í£º
Ô»ÆÚ8ÔÂ1Ô»8ÔÂ7ÈÕ8ÔÂ14ÈÕ8ÔÂ18ÈÕ8ÔÂ25ÈÕ
ƽ¾ùÆøÎ£¨¡æ£©3330323025
ÓõçÁ¿£¨Íò¶È£©3835413630
$\sum_{i=1}^{5}$xiyi=5446£¬$\sum_{i=1}^{5}$xi2=4538£¬$\widehat{b}$=$\frac{\sum_{i=1}^{5}{x}_{i}{y}_{i}-5\overline{x}\overline{y}}{\sum_{i=1}^{5}{{x}_{i}}^{2}-5{\overline{x}}^{2}}$£¬$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
£¨1£©Çë¸ù¾Ý±íÖеÄÊý¾Ý£¬Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì£®¾ÝÆøÏóîA±¨9ÔÂ3Èյį½¾ùÆøÎÂÊÇ 23¡æ£¬ÇëÔ¤²â9ÔÂ3ÈÕµÄÓõçÁ¿£»£¨½á¹û±£ÁôÕûÊý£©
£¨2£©Çë´Ó±íÖÐÈÎÑ¡Á½Ì죬¼ÇÓõçÁ¿£¨Íò¶È£©³¬¹ý35µÄÌìÊýΪ¦Î£¬Çó¦ÎµÄ¸ÅÂÊ·Ö²¼ÁУ¬²¢ÇóÆäÊýѧÆÚÍûºÍ·½²î£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªiÊÇÐéÊýµ¥Î»£¬Èô¸´Êýz=$\frac{m+i}{1+2i}$£¨m¡ÊR£©ÊÇ´¿ÐéÊý£¬Ôòm=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÀûÓö¨»ý·ÖµÄ¶¨Ò弯ËãÏÂÁлý·ÖµÄÖµ£º${¡Ò}_{0}^{4}$£¨2x+3£©dx£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬a1=1£¬Ç°nÏîºÍΪSn£¬ÇÒan+12-n¦Ë2-1=2¦ËSn£¬¦ËΪÕý³£Êý£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©¼Çbn=$\frac{{S}_{n}}{{a}_{n}}$£¬Cn=$\frac{1}{{S}_{n}}$+$\frac{1}{{S}_{k-n}}$£¨k£¬n¡ÊN*£¬k¡Ý2n+2£©£®
       ÇóÖ¤£º¢Ùbn£¼bn+1£»
                 ¢ÚCn£¾Cn+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÉèA£¬B·Ö±ðÊÇË«ÇúÏßC£º$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄ×ó¡¢ÓÒ¶¥µã£¬PÊÇË«ÇúÏßCÉÏÒìÓÚA£¬BµÄÈÎÒ»µã£¬ÉèÖ±ÏßAP£¬BPµÄбÂÊ·Ö±ðΪm£¬n£¬Ôò$\frac{2a}{b}$+ln|m|+ln|n|È¡µÃ×îСֵʱ£¬Ë«ÇúÏßCµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®2B£®$\sqrt{3}$C£®$\sqrt{2}$D£®$\sqrt{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®¶¨»ý·Ö${¡Ò}_{0}^{\frac{¦Ð}{3}}$£¨x2+sinx£©dxµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{{¦Ð}^{3}}{81}$+$\frac{1}{2}$B£®$\frac{{¦Ð}^{3}}{81}$-$\frac{1}{2}$C£®$\frac{2¦Ð}{3}$-$\frac{1}{2}$D£®$\frac{2¦Ð}{3}$+$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸