精英家教网 > 高中数学 > 题目详情
9.在某小学体育素质达标运动会上,对10名男生和10名女生在一分钟跳绳的次数进行统计,得到如下所示茎叶图:
(1)已知男生组中数据的中位数为125,女生组数据的平均数为124,求x,y的值;
(2)从一分钟内跳绳次数不低于110次且不高于120次的学生中任取两名,求两名学生中至少有一名男生的概率.

分析 (1)由中位数和平数的定义列出方程,由求出x,y.
(2)不低于110且不高于120的男生有2名,记为A1,A2,不低于110且不高于120的女生有三名,记B1,B2,B3,从这5名学生中任取两名学生,共有A${\;}_{5}^{2}$=10种取法,由此利用列举法能求出两名学生中至少有一名男生的概率.

解答 解:(1)∵120+$\frac{7+x}{2}$=125,
∴x=3,
∵$\frac{100+110×3+120×3+130×2+140+9+y+5+8+4+5+6+3+5+1}{10}$=124,
∴y=4.
(2)不低于110且不高于120的男生有2名,记为A1,A2
不低于110且不高于120的女生有三名,记B1,B2,B3
从这5名学生中任取两名学生,共有A${\;}_{5}^{2}$=10种取法,
其中两名学生中有一男一女有:
{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A1,A2},{B1,B2},{B1,B3},{B2,B3},共6种情况,
两名学生均为男生只有{A1,A2}一种情况,
则两名学生中至少有一名男生包含的基本事件有6+1=7种,
∴两名学生中至少有一名男生的概率p=$\frac{m}{n}=\frac{7}{10}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图,则该几何体的体积为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知P(1,1)为椭圆2x2+y2=4内一定点,过P引一条弦,使此弦以P为中点,则弦所在的直线方程2x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={(x,y)|y=x+1},B={(x,y)||x|+|y|=1},则A∩B中的元素个数为(  )
A.0个B.1个C.2个D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设等比数列{an}中,若a2=2,a2+a4+a6=14,则公比q=(  )
A.3B.$±\sqrt{3}$C.2D.$±\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某次数学测验,12名同学所得分数的茎叶图如图,则这些分数的中位数是(  )
A.80B.81C.82D.83

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某校开设A类选修课3门,B类选修课3门,一位同学 从中选3门.若要求两类课程中各至少选一门,则不同的选法共有(  )
A.3种B.6种C.9种D.18种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知直角梯形ABCD所在的平面垂直于平面ABE,∠EAB=∠ABC=90°,∠DAB=60°,AB=AD=AE,P为线段BE的中点.

(Ⅰ)求证:CP∥平面DAE;
(Ⅱ)求平面CDE与平面ABE所成的锐二面角θ的余弦值;
(Ⅲ)在线段EC上是否存在一点Q,使直线PQ与平面CDE所成的角的正弦值为$\frac{3\sqrt{6}}{14}$.若存在,求出$\frac{EQ}{EC}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某服装超市举办了一次有奖促销活动,顾客消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.
方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性抽出3个小球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸到2个红球则打6折,若摸到1个红球,则打7折;若没有摸到红球,则不打折;
方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回的摸取,连续3次,每摸到1个红球,立减200元.
(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;
(2)若某顾客消费恰好满1000元,则该顾客选择哪种抽奖方案更合适?

查看答案和解析>>

同步练习册答案