精英家教网 > 高中数学 > 题目详情
4.设等比数列{an}中,若a2=2,a2+a4+a6=14,则公比q=(  )
A.3B.$±\sqrt{3}$C.2D.$±\sqrt{2}$

分析 a2=2,a2+a4+a6=14,可得2(1+q2+q4=14,解出即可得出.

解答 解:∵a2=2,a2+a4+a6=14,
∴2(1+q2+q4=14,
∴q4+q2-6=0,
解得公比q=$±\sqrt{2}$.
故选:D.

点评 本题考查了等比数列的通项公式、方程的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.定义A-B={x|x∈A且x∉B}.已知A={1,2},B={1,3,4},则A-B=(  )
A.{1}B.{2}C.{3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥P-ABCD,底面ABCD是边长为2的菱形,$∠ABC=\frac{π}{3}$,且PA⊥平面ABCD.
(Ⅰ)证明:平面PAC⊥平面PBD;
(Ⅱ)若平面PAB与平面PCD的夹角为$\frac{π}{3}$,试求线段PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC,BC=3,AB=$\sqrt{6},∠C=\frac{π}{4}$,则∠A=$\frac{π}{3}或\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知随机变量η满足E(1-η)=5,D(1-η)=5,则下列说法正确的是(  )
A.E(η)=-5,D(η)=5B.E(η)=-4,D(η)=-4C.E(η)=-5,D(η)=-5D.E(η)=-4,D(η)=5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在某小学体育素质达标运动会上,对10名男生和10名女生在一分钟跳绳的次数进行统计,得到如下所示茎叶图:
(1)已知男生组中数据的中位数为125,女生组数据的平均数为124,求x,y的值;
(2)从一分钟内跳绳次数不低于110次且不高于120次的学生中任取两名,求两名学生中至少有一名男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\frac{{\sqrt{3}}}{2}sin(2x+\frac{π}{3})-{cos^2}x+\frac{1}{2}$(x∈R),则下列说法正确的是(  )
A.函数f(x)的最小正周期为$\frac{π}{2}$
B.函数f(x)的图象关于y轴对称
C.点$(\frac{π}{6},0)$为函数f(x)图象的一个对称中心
D.函数f(x)的最大值为$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知i是虚数单位,若复数z=$\frac{m+i}{1+2i}$(m∈R)是纯虚数,则m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1,F2,两条渐近线分别为l1,l2,过F1作F1A⊥l1于点A,过F2作F2B⊥l2于点B,O为原点,若△ABO是边长为$\sqrt{3}$的等边三角形,则双曲线的方程为(  )
A.$\frac{x^2}{21}-\frac{y^2}{9}=1$B.$\frac{x^2}{9}-\frac{y^2}{21}=1$C.$\frac{x^2}{3}-\frac{y^2}{9}=1$D.$\frac{x^2}{9}-\frac{y^2}{3}=1$

查看答案和解析>>

同步练习册答案