精英家教网 > 高中数学 > 题目详情
15.如图,四棱锥P-ABCD,底面ABCD是边长为2的菱形,$∠ABC=\frac{π}{3}$,且PA⊥平面ABCD.
(Ⅰ)证明:平面PAC⊥平面PBD;
(Ⅱ)若平面PAB与平面PCD的夹角为$\frac{π}{3}$,试求线段PA的长.

分析 (Ⅰ)由已知结合线面垂直的性质可得BD⊥PA,再由四边形ABCD是菱形,得BD⊥AC,利用线面垂直的判定可得BD⊥平面PAC,进一步得到平面PAC⊥平面PBD;
(Ⅱ)取DC的中点E,由已知可得AE⊥CD,分别以AE、AB、AP为x、y、z轴,建立空间直角坐标系A-xyz,设PA=m(m>0).求出A、P、C、D的坐标,得到平面
PCD与平面PAB的法向量,由两法向量所成角的余弦值列式求得线段PA的长.

解答 (Ⅰ)证明:由PA⊥平面ABCD,得BD⊥PA,
∵四边形ABCD是菱形,∴BD⊥AC,
又∵PA∩AC=A,
∴BD⊥平面PAC,
又∵BD?平面PBD,∴平面PAC⊥平面PBD;
(Ⅱ)解:取DC的中点E,由已知可得AE⊥CD,
分别以AE、AB、AP为x、y、z轴,建立空间直角坐标系A-xyz(如图),
设PA=m(m>0).
则$A({0,0,0}),P({0,0,m}),C({\sqrt{3},1,0}),D({\sqrt{3},-1,0})$,
∴$\overrightarrow{DP}=({-\sqrt{3},1,m}),\overrightarrow{DC}=({0,2,0})$.            
设平面PCD的法向量为n=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DP}=0}\\{\overrightarrow{n}•\overrightarrow{DC}=0}\end{array}\right.$,得$\left\{\begin{array}{l}-\sqrt{3}x+y+mz=0\\ 2y=0\end{array}\right.$,取x=m,得$\overrightarrow{n}=(m,0,\sqrt{3})$.
平面PAB的法向量可取$\overrightarrow{r}$=(1,0,0),
则cos$\frac{π}{3}$=|cos<$\overrightarrow{n},\overrightarrow{r}$>|=$\frac{|\overrightarrow{n}•\overrightarrow{r}|}{|\overrightarrow{n}|•|\overrightarrow{r}|}=\frac{m}{\sqrt{{m}^{2}+3}}=\frac{1}{2}$,解得m=1,
故线段PA的长为1.

点评 本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.sin300°+tan600°的值是  (  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$+$\sqrt{3}$D.$\frac{1}{2}$+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中(图),$A=\frac{π}{3},cosC=\frac{{2\sqrt{7}}}{7},BC=\sqrt{7}$,线段AC上点D满足AD=2DC.
(Ⅰ)求sin∠ABC及边AC的长;
(Ⅱ)求sin∠CBD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex+ax,g(x)=ax-lnx,其中 a<0.
(1)若函数f(x)是(l,ln 5)上的单调函数,求a的取值范围;
(2)若存在区间M,使f(x)和g(x)在区间M上具有相同的单调性,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F,上顶点为A,若直线AF与圆O:x2+y2=$\frac{{3{a^2}}}{16}$相离,则该椭圆离心率的取值范围是(  )
A.$(0,\frac{1}{2})$B.$(\frac{1}{2},\frac{{\sqrt{3}}}{2})$C.$(\frac{1}{2},1)$D.$(\frac{{\sqrt{3}}}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知P(1,1)为椭圆2x2+y2=4内一定点,过P引一条弦,使此弦以P为中点,则弦所在的直线方程2x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2lnx-x2
(1)求f(x)的单调区间.
(2)求f(x)在区间$[\frac{1}{e},e]$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设等比数列{an}中,若a2=2,a2+a4+a6=14,则公比q=(  )
A.3B.$±\sqrt{3}$C.2D.$±\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=4|$\overrightarrow{b}$|=2,$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,则(2$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$=-$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案